311 research outputs found

    Approximate renormalization for the break-up of invariant tori with three frequencies

    Full text link
    We construct an approximate renormalization transformation for Hamiltonian systems with three degrees of freedom in order to study the break-up of invariant tori with three incommensurate frequencies which belong to the cubic field Q(τ)Q(\tau), where τ3+τ2−2τ−1=0\tau^3+\tau^2-2\tau-1=0. This renormalization has two fixed points~: a stable one and a hyperbolic one with a codimension one stable manifold. We compute the associated critical exponents that characterize the universality class for the break-up of the invariant tori we consider.Comment: 5 pages, REVTe

    Incomplete Dirac reduction of constrained Hamiltonian systems

    Full text link
    First-class constraints constitute a potential obstacle to the computation of a Poisson bracket in Dirac's theory of constrained Hamiltonian systems. Using the pseudoinverse instead of the inverse of the matrix defined by the Poisson brackets between the constraints, we show that a Dirac-Poisson bracket can be constructed, even if it corresponds to an incomplete reduction of the original Hamiltonian system. The uniqueness of Dirac brackets is discussed

    Determination of the threshold of the break-up of invariant tori in a class of three frequency Hamiltonian systems

    Get PDF
    We consider a class of Hamiltonians with three degrees of freedom that can be mapped into quasi-periodically driven pendulums. The purpose of this paper is to determine the threshold of the break-up of invariant tori with a specific frequency vector. We apply two techniques: the frequency map analysis and renormalization-group methods. The renormalization transformation acting on a Hamiltonian is a canonical change of coordinates which is a combination of a partial elimination of the irrelevant modes of the Hamiltonian and a rescaling of phase space around the considered torus. We give numerical evidence that the critical coupling at which the renormalization transformation starts to diverge is the same as the value given by the frequency map analysis for the break-up of invariant tori. Furthermore, we obtain by these methods numerical values of the threshold of the break-up of the last invariant torus.Comment: 18 pages, 4 figure

    Time-frequency analysis of chaotic systems

    Full text link
    We describe a method for analyzing the phase space structures of Hamiltonian systems. This method is based on a time-frequency decomposition of a trajectory using wavelets. The ridges of the time-frequency landscape of a trajectory, also called instantaneous frequencies, enable us to analyze the phase space structures. In particular, this method detects resonance trappings and transitions and allows a characterization of the notion of weak and strong chaos. We illustrate the method with the trajectories of the standard map and the hydrogen atom in crossed magnetic and elliptically polarized microwave fields.Comment: 36 pages, 18 figure
    • …
    corecore