2,330 research outputs found

    The melanocortin receptors and their accessory proteins.

    Get PDF
    The five melanocortin receptors (MCRs) named MC1R-MC5R have diverse physiological roles encompassing pigmentation, steroidogenesis, energy homeostasis and feeding behavior as well as exocrine function. Since their identification almost 20 years ago much has been learnt about these receptors. As well as interacting with their endogenous ligands the melanocortin peptides, there is now a growing list of important peptides that can modulate the way these receptors signal, acting as agonists, antagonists, and inverse agonists. The discovery of melanocortin 2 receptor accessory proteins as a novel accessory factor to the MCRs provides further insight into the regulation of these important G protein-coupled receptor

    Localisation of the melanocortin-2-receptor and its accessory proteins in the developing and adult adrenal gland

    Get PDF
    The melanocortin-2-receptor (MC2R)/MC2R accessory protein (MRAP) complex is critical to the production of glucocorticoids from the adrenal cortex. Inactivating mutations in either MC2R or MRAP result in the clinical condition familial glucocorticoid deficiency. The localisation of MC2R together with MRAP within the adrenal gland has not previously been reported. Furthermore, MRAP2, a paralogue of MRAP, has been shown in vitro to have a similar function to MRAP, facilitating MC2R trafficking and responsiveness to ACTH. Despite similar MC2R accessory functions, in vivo, patients with inactivating mutations of MRAP fail to be rescued by a functioning MRAP2 gene, suggesting differences in adrenal expression, localisation and/or function between the two MRAPs. In this study on the rat adrenal gland, we demonstrate that while MRAP and MC2R are highly expressed in the zona fasciculata, MRAP2 is expressed throughout the adrenal cortex in low quantities. In the developing adrenal gland, both MRAP and MRAP2 are equally well expressed. The MC2R/MRAP2 complex requires much higher concentrations of ACTH to activate compared with the MC2R/MRAP complex. Interestingly, expression of MC2R and MRAP in the undifferentiated zone would support the notion that ACTH may play an important role in adrenal cell differentiation and maintenance

    Promiscuity among the MRAPs.

    Get PDF
    The melanocortin 2 receptor accessory protein (MRAP) was originally discovered to be an essential co-receptor for the ACTH receptor/melanocortin 2 receptor, and it physically interacts with this receptor and is required for receptor trafficking and ligand binding. A related molecule, MRAP2, is mainly expressed in the CNS and appears to have a role with the melanocortin 4 receptor. Consistent with this is the observation that a massively obese phenotype develops when the Mrap2 gene is deleted in mice. However, the characteristics of this phenotype differ from those of Mc4r deleted mice, and suggest that an additional role, possibly resulting from an interaction with other receptors is possible. In support of this, a functional interaction with the prokineticin receptors was recently reported. Evidence for other receptor interactions and aspects of the tissue distribution of MRAP and MRAP2 gene expression may indicate that these accessory proteins have a wider role than with the melanocortin receptors alone

    Synthesis of Mesoporous Gadolinium Doped Ceria - Platinum Composite

    Get PDF
    published_or_final_versio

    Synthesis of Pt-OMG mesoporous composite via nanocasting and chemical vapor infiltration

    Get PDF
    published_or_final_versio

    Neurocutaneous melanosis and negative fluorodeoxyglucose positron emission tomography

    Get PDF
    Neurocutaneous melanosis is a rare condition characterized by cutaneous melanocytic naevi and the presence of melanocytes in the leptomeninges. It is commonly associated with malignant melanoma formation in the central nervous system (CNS) with poor prognosis. Herewe report a 13-year-old boy with neurocutaneous melanosis who presented with seizure with diffuse CNS malignant melanoma, as demonstrated by magnetic resonance imaging (MRI). 18F-fluorodeoxyglucose positron emission tomography (PET) was carried out, but was unable to detect the CNS involvement. So far, this is the first report involving the use of PET in neurocutaneous melanosis and we suggest that MRI is more sensitive than PET with 18F-fluorodeoxyglucose in such conditions. © 2010 The Authors. Journal compilation © 2010 College of Surgeons of Hong Kong.postprin

    Multiple morbidity across the lifespan in people with Down syndrome or intellectual disabilities: a population-based cohort study using electronic health records.

    Get PDF
    BACKGROUND: The Down syndrome phenotype is well established, but our understanding of its morbidity patterns is limited. We comprehensively estimated the risk of multiple morbidity across the lifespan in people with Down syndrome compared with the general population and controls with other forms of intellectual disability. METHODS: In this matched population-based cohort-study design, we used electronic health-record data from the UK Clinical Practice Research Datalink (CRPD) from Jan 1, 1990, to June 29, 2020. We aimed to explore the pattern of morbidities throughout the lifespan of people with Down syndrome compared with people with other intellectual disabilities and the general population, to identify syndrome-specific health conditions and their age-related incidence. We estimated incidence rates per 1000 person-years and incidence rate ratios (IRRs) for 32 common morbidities. Hierarchical clustering was used to identify groups of associated conditions using prevalence data. FINDINGS: Between Jan 1, 1990, and June 29, 2020, a total of 10 204 people with Down syndrome, 39 814 controls, and 69 150 people with intellectual disabilities were included. Compared with controls, people with Down syndrome had increased risk of dementia (IRR 94·7, 95% CI 69·9-128·4), hypothyroidism (IRR 10·6, 9·6-11·8), epilepsy (IRR 9·7, 8·5-10·9), and haematological malignancy (IRR 4·7, 3·4-6·3), whereas asthma (IRR 0·88, 0·79-0·98), cancer (solid tumour IRR 0·75, 0·62-0·89), ischaemic heart disease (IRR 0·65, 0·51-0·85), and particularly hypertension (IRR 0·26, 0·22-0·32) were less frequent in people with Down syndrome than in controls. Compared to people with intellectual disabilities, risk of dementia (IRR 16·60, 14·23-19·37), hypothyroidism (IRR 7·22, 6·62-7·88), obstructive sleep apnoea (IRR 4·45, 3·72-5·31), and haematological malignancy (IRR 3·44, 2·58-4·59) were higher in people with Down syndrome, with reduced rates for a third of conditions, including new onset of dental inflammation (IRR 0·88, 0·78-0·99), asthma (IRR 0·82, 0·73-0·91), cancer (solid tumour IRR 0·78, 0·65-0·93), sleep disorder (IRR 0·74, 0·68-0·80), hypercholesterolaemia (IRR 0·69, 0·60-0·80), diabetes (IRR 0·59, 0·52-0·66), mood disorder (IRR 0·55, 0·50-0·60), glaucoma (IRR 0·47, 0·29-0·78), and anxiety disorder (IRR 0·43, 0·38-0·48). Morbidities in Down syndrome could be categorised on age-related incidence trajectories, and their prevalence clustered into typical syndromic conditions, cardiovascular diseases, autoimmune disorders, and mental health conditions. INTERPRETATION: Multiple morbidity in Down syndrome shows distinct patterns of age-related incidence trajectories and clustering that differ from those found in the general population and in people with other intellectual disabilities, with implications for provision and timing of health-care screening, prevention, and treatment for people with Down syndrome. FUNDING: The European Union's Horizon 2020 Research and Innovation Programme, the Jérôme Lejeune Foundation, the Alzheimer's Society, the Medical Research Council, the Academy of Medical Sciences, the Wellcome Trust, and William Harvey Research Limited

    MRAP deficiency impairs adrenal progenitor cell differentiation and gland zonation.

    Get PDF
    Melanocortin 2 receptor accessory protein (MRAP) is a single transmembrane domain accessory protein and a critical component of the hypothamo-pituitary-adrenal axis. MRAP is highly expressed in the adrenal gland and is essential for adrenocorticotropin hormone (ACTH) receptor expression and function. Human loss-of-function mutations in MRAP cause familial glucocorticoid (GC) deficiency (FGD) type 2 (FGD2), whereby the adrenal gland fails to respond to ACTH and to produce cortisol. In this study, we generated Mrap-null mice to study the function of MRAP in vivo. We found that the vast majority of Mrap-/- mice died at birth but could be rescued by administration of corticosterone to pregnant dams. Surviving Mrap-/- mice developed isolated GC deficiency with normal mineralocorticoid and catecholamine production, recapitulating FGD2. The adrenal glands of adult Mrap-/- mice were small, with grossly impaired adrenal capsular morphology and cortex zonation. Progenitor cell differentiation was significantly impaired, with dysregulation of WNT4/β-catenin and sonic hedgehog pathways. These data demonstrate the roles of MRAP in both steroidogenesis and the regulation of adrenal cortex zonation. This is the first mouse model of isolated GC deficiency and reveals the role of MRAP in adrenal progenitor cell regulation and cortex zonation.-Novoselova, T. V., Hussain, M., King, P. J., Guasti, L., Metherell, L. A., Charalambous, M., Clark, A. J. L., Chan, L. F. MRAP deficiency impairs adrenal progenitor cell differentiation and gland zonation

    C-type natriuretic peptide is a pivotal regulator of metabolic homeostasis

    Get PDF
    Thermogenesis and adipogenesis are tightly regulated mechanisms that maintain lipid homeostasis and energy balance; dysfunction of these critical processes underpins obesity and contributes to cardiometabolic disease. C-type natriuretic peptide (CNP) fulfills a multimodal protective role in the cardiovascular system governing local blood flow, angiogenesis, cardiac function, and immune cell reactivity. Herein, we investigated a parallel, preservative function for CNP in coordinating metabolic homeostasis. Global inducible CNP knockout mice exhibited reduced body weight, higher temperature, lower adiposity, and greater energy expenditure in vivo. This thermogenic phenotype was associated with increased expression of uncoupling protein-1 and preferential lipid utilization by mitochondria, a switch corroborated by a corresponding diminution of insulin secretion and glucose clearance. Complementary studies in isolated murine and human adipocytes revealed that CNP exerts these metabolic regulatory actions by inhibiting sympathetic thermogenic programming via G(i)-coupled natriuretic peptide receptor (NPR)-C and reducing peroxisome proliferator-activated receptor-γ coactivator-1α expression, while concomitantly driving adipogenesis via NPR-B/protein kinase-G. Finally, we identified an association between CNP/NPR-C expression and obesity in patient samples. These findings establish a pivotal physiological role for CNP as a metabolic switch to balance energy homeostasis. Pharmacological targeting of these receptors may offer therapeutic utility in the metabolic syndrome and related cardiovascular disorders

    Overexpression of melanocortin 2 receptor accessory protein 2 (MRAP2) in adult paraventricular MC4R neurons regulates energy intake and expenditure

    Get PDF
    The Medical Research Council UK (MRC/Academy of Medical Sciences Clinician Scientist Fellowship Grant G0802796 (to LFC) and NIH grants R01 DK105571, DK097566 and DK107293 (to SD)
    corecore