3 research outputs found

    Discovery of Potent, Selective, and Structurally Novel Dot1L Inhibitors by a Fragment Linking Approach

    No full text
    Misdirected catalytic activity of histone methyltransferase Dot1L is believed to be causative for a subset of highly aggressive acute leukemias. Targeting the catalytic domain of Dot1L represents a potential therapeutic approach for these leukemias. In the context of a comprehensive Dot1L hit finding strategy, a knowledge-based virtual screen of the Dot1L SAM binding pocket led to the discovery of <b>2</b>, a non-nucleoside fragment mimicking key interactions of SAM bound to Dot1L. Fragment linking of <b>2</b> and <b>3</b>, an induced back pocket binder identified in earlier studies, followed by careful ligand optimization led to the identification of <b>7</b>, a highly potent, selective and structurally novel Dot1L inhibitor

    mRNA Display Identifies Potent, Paralog-Selective Peptidic Ligands for ARID1B

    No full text
    The ARID1A and ARID1B subunits are mutually exclusive components of the BAF variant of SWI/SNF chromatin remodeling complexes. Loss of function mutations in ARID1A are frequently observed in various cancers, resulting in a dependency on the paralog ARID1B for cancer cell proliferation. However, ARID1B has never been targeted directly, and the high degree of sequence similarity to ARID1A poses a challenge for the development of selective binders. In this study, we used mRNA display to identify peptidic ligands that bind with nanomolar affinities to ARID1B and showed high selectivity over ARID1A. Using orthogonal biochemical, biophysical, and chemical biology tools, we demonstrate that the peptides engage two different binding pockets, one of which directly involves an ARID1B-exclusive cysteine that could allow covalent targeting by small molecules. Our findings impart the first evidence of the ligandability of ARID1B, provide valuable tools for drug discovery, and suggest opportunities for the development of selective molecules to exploit the synthetic lethal relationship between ARID1A and ARID1B in cancer

    Optimization of a Dibenzodiazepine Hit to a Potent and Selective Allosteric PAK1 Inhibitor

    No full text
    The discovery of inhibitors targeting novel allosteric kinase sites is very challenging. Such compounds, however, once identified could offer exquisite levels of selectivity across the kinome. Herein we report our structure-based optimization strategy of a dibenzodiazepine hit <b>1</b>, discovered in a fragment-based screen, yielding highly potent and selective inhibitors of PAK1 such as <b>2</b> and <b>3</b>. Compound <b>2</b> was cocrystallized with PAK1 to confirm binding to an allosteric site and to reveal novel key interactions. Compound <b>3</b> modulated PAK1 at the cellular level and due to its selectivity enabled valuable research to interrogate biological functions of the PAK1 kinase
    corecore