7,580 research outputs found

    Deep learning for inferring cause of data anomalies

    Get PDF
    Daily operation of a large-scale experiment is a resource consuming task, particularly from perspectives of routine data quality monitoring. Typically, data comes from different sub-detectors and the global quality of data depends on the combinatorial performance of each of them. In this paper, the problem of identifying channels in which anomalies occurred is considered. We introduce a generic deep learning model and prove that, under reasonable assumptions, the model learns to identify 'channels' which are affected by an anomaly. Such model could be used for data quality manager cross-check and assistance and identifying good channels in anomalous data samples. The main novelty of the method is that the model does not require ground truth labels for each channel, only global flag is used. This effectively distinguishes the model from classical classification methods. Being applied to CMS data collected in the year 2010, this approach proves its ability to decompose anomaly by separate channels.Comment: Presented at ACAT 2017 conference, Seattle, US

    Characteristics and controls of the runout behaviour of non-Boussinesq particle-laden gravity currents – A large-scale experimental investigation of dilute pyroclastic density currents

    Get PDF
    One of the most dangerous aspects of explosive volcanism is the occurrence of dilute pyroclastic density currents that move at high velocities of tens to about a hundred of metres per second outwards from volcanic vents. Predicting the runout behaviour of these turbulent flows of hot particles and air is complicated by strong changes in the flow density resulting from entrainment of ambient air, sedimentation of particles, as well as heating and expansion of the gas phase. Current hazard models that are based on the behaviour of aqueous gravity currents cannot capture all aspects of the flow dynamics, and thus pyroclastic density current dynamics remain comparatively poorly understood. Here we interrogate the runout behaviour of dilute pyroclastic density currents in large-scale experiments using hot volcanic material and gas. We demonstrate that the flows transition through four dynamic regimes with distinct density and force characteristics. The first, inertial regime is characterized by strong deceleration under high density differences between the flow and ambient air where suspended particles carry a main proportion of the flows' momentum. When internal gravity waves start to propagate from the flow body into the advancing flow front, the currents transition into a second, inertia-buoyancy regime while flow density continues to decline. In this regime, subsequent arrivals of fast-moving internal gravity waves into the front replenish momentum and lead to sudden short-lived front accelerations. In the third regime, when the density ratio between flow and ambient air decreases closer to a value of unity, buoyancy forces become negligible, but pressure drag forces are large and constitute the main flow retarding force. In this inertia-pressure drag regime, internal gravity waves cease to reach the front. Finally, and with the density ratio decreasing below 1, the current transitions into a buoyantly rising thermal in regime 4. Unlike for aqueous gravity currents, the Froude number is not constant and viscous forces are negligible in these gas-particle gravity currents. We show that, in this situation, existing Boussinesq and non-Boussinesq gravity current models strongly underpredict the front velocity for most of the flow runout for at least half of the flow propagation. These results are not only important for hazard mitigation of pyroclastic density currents but are also relevant for other turbulent gas-particle gravity currents, such as powder snow avalanches and dust storms

    Observation of ZZ production in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present an observation for ZZ -> l+l-l'+l'- (l, l' = e or mu) production in ppbar collisions at a center-of-mass energy of sqrt(s) = 1.96 TeV. Using 1.7 fb-1 of data collected by the D0 experiment at the Fermilab Tevatron Collider, we observe three candidate events with an expected background of 0.14 +0.03 -0.02 events. The significance of this observation is 5.3 standard deviations. The combination of D0 results in this channel, as well as in ZZ -> l+l-nunubar, yields a significance of 5.7 standard deviations and a combined cross section of sigma(ZZ) = 1.60 +/- 0.63 (stat.) +0.16 -0.17 (syst.) pb.Comment: 7 pages, 1 figure, 2 tables Modified slightly following review proces

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Combined search for the quarks of a sequential fourth generation

    Get PDF
    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore