2,271 research outputs found
Forward Jet Studies in CMS
We present studies of the reconstruction capabilities of the CMS Hadron Forward (HF) calorimeter (35) to measure the single inclusive forward jet spectrum and forward-backward (Mueller-Navelet) dijets in - collisions at 14 TeV. Both observables are sensitive to low- gluon densities and non-linear QCD evolution in the proton
Forward physics with CMS
We describe several example analyses of the CMS forward physics program: A feasibility study for observing production in single diffractive dissociation, the analysis of exclusive production and the measurement of very low-x parton distributions and search for evidence of BFKL dynamics with forward jets
Extraction of the strong coupling with HERA and EIC inclusive data
Sensitivity to the strong coupling is investigated using existing Deep Inelastic Scattering data from HERA in combination with projected future measurements from the Electron Ion Collider (EIC) in a next-to-next-to-leading order QCD analysis. A potentially world-leading level of precision is achievable when combining simulated inclusive neutral current EIC data with inclusive charged and neutral current measurements from HERA, with or without the addition of HERA inclusive jet and dijet data. The result can be obtained with substantially less than one year of projected EIC data at the lower end of the EIC centre-of-mass energy range. Some questions remain over the magnitude of uncertainties due to missing higher orders in the theoretical framework
Extraction of the strong coupling with HERA and EIC inclusive data
Sensitivity to the strong coupling is investigated using
existing Deep Inelastic Scattering data from HERA in combination with projected
future measurements from the Electron Ion Collider (EIC) in a
next-to-next-to-leading order QCD analysis. A potentially world-leading level
of precision is achievable when combining simulated inclusive neutral current
EIC data with inclusive charged and neutral current measurements from HERA,
with or without the addition of HERA inclusive jet and dijet data. The result
can be obtained with substantially less than one year of projected EIC data at
the lower end of the EIC centre-of-mass energy range. Some questions remain
over the magnitude of uncertainties due to missing higher orders in the
theoretical framework.Comment: 12 pages, 4 figure
Radiation-Hardness Measurements of High Content Quartz Fibres Irradiated with 24 GeV Protons up to 1.25 Grad
We investigated the darkening of two high OH- content quartz fibres irradiated with 24 GeV protons at the Cern PS facility IRRAD. The two tested fibres have a 0.6 mm quartz core diameter, one with hard plastic cladding (qp) and the other with quartz cladding (qq). These fibres were exposed at about 1.25 Gigarad in 3 weeks. The fibres became opaque below 380nm, and in the range 580-650 nm. The darkening under irradiation and damage recovery after irradiation as a function of dose and time are similar to what we observed with electrons. The typical attenuation at 455 nm are 1.44 + - 0.22 and 2.20 + - 0.15 dB/m at 100 Mrad for qp and qq fibres, respectively. The maximum damage recovery is also observed near this wavelength
Synchronization and Timing in CMS HCAL
The synchronization and timing of the hadron calorimeter (HCAL) for the Compact Muon Solenoid has been extensively studied with test beams at CERN during the period 2003-4, including runs with 40 MHz structured beam. The relative phases of the signals from different calorimeter segments are timed to 1 ns accuracy using a laser and equalized using programmable delay settings in the front-end electronics. The beam was used to verify the timing and to map out the entire range of pulse shapes over the 25 ns interval between beam crossings. These data were used to make detailed measurements of energy-dependent time slewing effects and to tune the electronics for optimal performance
Energy Response and Longitudinal Shower Profiles Measured in CMS HCAL and Comparison With Geant4
The response of the CMS combined electromagnetic and hadron calorimeter to beams of pions with momenta in the range 5-300 GeV/c has been measured in the H2 test beam at CERN. The raw response with the electromagnetic compartment calibrated to electrons and the hadron compartment calibrated to 300 GeV pions may be represented by sigma = (1.2) sqrt{E} oplus (0.095) E. The fraction of energy visible in the calorimeter ranges from 0.72 at 5 GeV to 0.95 at 300 GeV, indicating a substantial nonlinearity. The intrinsic electron to hadron ratios are fit as a function of energy and found to be in the range 1.3-2.7 for the electromagnetic compartment and 1.4-1.8 for the hadronic compartment. The fits are used to correct the non-linearity of the e pi response to 5% over the entire measured range resulting in a substantially improved resolution at low energy. Longitudinal shower profile have been measured in detail and compared to Geant4 models, LHEP-3.7 and QGSP-2.8. At energies below 30 GeV, the data, LHEP and QGSP are in agreement. Above 30 GeV, LHEP gives a more accurate simulation of the longitudinal shower profile
Design, Performance, and Calibration of CMS Hadron Endcap Calorimeters
Detailed measurements have been made with the CMS hadron calorimeter endcaps (HE) in response to beams of muons, electrons, and pions. Readout of HE with custom electronics and hybrid photodiodes (HPDs) shows no change of performance compared to readout with commercial electronics and photomultipliers. When combined with lead-tungstenate crystals, an energy resolution of 8\% is achieved with 300 GeV/c pions. A laser calibration system is used to set the timing and monitor operation of the complete electronics chain. Data taken with radioactive sources in comparison with test beam pions provides an absolute initial calibration of HE to approximately 4\% to 5\%
Design, Performance and Calibration of the CMS Forward Calorimeter Wedges
We report on the test beam results and calibration methods using charged particles of the CMS Forward Calorimeter (HF). The HF calorimeter covers a large pseudorapidity region (3\l |\eta| \le 5), and is essential for large number of physics channels with missing transverse energy. It is also expected to play a prominent role in the measurement of forward tagging jets in weak boson fusion channels. The HF calorimeter is based on steel absorber with embedded fused-silica-core optical fibers where Cherenkov radiation forms the basis of signal generation. Thus, the detector is essentially sensitive only to the electromagnetic shower core and is highly non-compensating (e/h \approx 5). This feature is also manifest in narrow and relatively short showers compared to similar calorimeters based on ionization. The choice of fused-silica optical fibers as active material is dictated by its exceptional radiation hardness. The electromagnetic energy resolution is dominated by photoelectron statistics and can be expressed in the customary form as a/\sqrt{E} + b. The stochastic term a is 198% and the constant term b is 9%. The hadronic energy resolution is largely determined by the fluctuations in the neutral pion production in showers, and when it is expressed as in the electromagnetic case, a = 280% and b = 11%
- âŠ