950 research outputs found

    Ground-state properties and superfluidity of two- and quasi two-dimensional solid 4He

    Full text link
    In a recent study we have reported a new type of trial wave function symmetric under the exchange of particles and which is able to describe a supersolid phase. In this work, we use the diffusion Monte Carlo method and this model wave function to study the properties of solid 4He in two- and quasi two-dimensional geometries. In the purely two-dimensional case, we obtain results for the total ground-state energy and freezing and melting densities which are in good agreement with previous exact Monte Carlo calculations performed with a slightly different interatomic potential model. We calculate the value of the zero-temperature superfluid fraction \rho_{s} / \rho of 2D solid 4He and find that it is negligible in all the considered cases, similarly to what is obtained in the perfect (free of defects) three-dimensional crystal using the same computational approach. Interestingly, by allowing the atoms to move locally in the perpendicular direction to the plane where they are confined to zero-point oscillations (quasi two-dimensional crystal) we observe the emergence of a finite superfluid density that coexists with the periodicity of the system.Comment: 16 pages, 8 figure

    Two-dimensional molecular para-hydrogen and ortho-deuterium at zero temperature

    Full text link
    We study molecular para-hydrogen (p-H2{\rm H_{2}}) and ortho-deuterium (o-D2{\rm D_{2}}) in two dimensions and in the limit of zero temperature by means of the diffusion Monte Carlo method. We report energetic and structural properties of both systems like the total and kinetic energy per particle, radial pair distribution function, and Lindemann's ratio in the low pressure regime. By comparing the total energy per particle as a function of the density in liquid and solid p-H2{\rm H_{2}}, we show that molecular para-hydrogen, and also ortho-deuterium, remain solid at zero temperature. Interestingly, we assess the quality of three different symmetrized trial wave functions, based on the Nosanow-Jastrow model, in the p-H2{\rm H_{2}} solid film at the variational level. In particular, we analyze a new type of symmetrized trial wave function which has been used very recently to describe solid 4^{4}He and found that also characterizes hydrogen satisfactorily. With this wave function, we show that the one-body density matrix ŌĪ1(r)\varrho_{1} (r) of solid p-H2{\rm H_{2}} possesses off-diagonal long range order, with a condensate fraction that increases sizably in the negative pressure regime.Comment: 11 pages, 9 figure

    Comment on 'Molybdenum at High Pressure and Temperature: Melting from Another Solid Phase'

    Get PDF
    There has been a major controversy over the past seven years about the high-pressure melting curves of transition metals. Static compression (diamond-anvil cell: DAC) experiments up to the Mbar region give very low melting slopes dT_m/dP, but shock-wave (SW) data reveal transitions indicating much larger dT_m/dP values. Ab initio calculations support the correctness of the shock data. In a very recent letter, Belonoshko et al. propose a simple and elegant resolution of this conflict for molybdenum. Using ab initio calculations based on density functional theory (DFT), they show that the high-P/high-T phase diagram of Mo must be more complex than was hitherto thought. Their calculations give convincing evidence that there is a transition boundary between the normal bcc structure of Mo and a high-T phase, which they suggest could be fcc. They propose that this transition was misinterpreted as melting in DAC experiments. In confirmation, they note that their boundary also explains a transition seen in the SW data. We regard Belonoshko et al.'s Letter as extremely important, but we note that it raises some puzzling questions, and we believe that their proposed phase diagram cannot be completely correct. We have calculated the Helmholtz and Gibbs free energies of the bcc, fcc and hcp phases of Mo, using essentially the same quasiharmonic methods as used by Belonoshko et al.; we find that at high-P and T Mo in the hcp structure is more stable than in bcc or fcc.Comment: 1 page, 1 figure. submitted to Phys. Rev. Let

    Ab initio melting curve of molybdenum by the phase coexistence method

    Full text link
    We report ab initio calculations of the melting curve of molybdenum for the pressure range 0-400 GPa. The calculations employ density functional theory (DFT) with the Perdew-Burke-Ernzerhof exchange-correlation functional in the projector augmented wave (PAW) implementation. We present tests showing that these techniques accurately reproduce experimental data on low-temperature b.c.c. Mo, and that PAW agrees closely with results from the full-potential linearized augmented plane-wave implementation. The work attempts to overcome the uncertainties inherent in earlier DFT calculations of the melting curve of Mo, by using the ``reference coexistence'' technique to determine the melting curve. In this technique, an empirical reference model (here, the embedded-atom model) is accurately fitted to DFT molecular dynamics data on the liquid and the high-temperature solid, the melting curve of the reference model is determined by simulations of coexisting solid and liquid, and the ab initio melting curve is obtained by applying free-energy corrections. Our calculated melting curve agrees well with experiment at ambient pressure and is consistent with shock data at high pressure, but does not agree with the high pressure melting curve deduced from static compression experiments. Calculated results for the radial distribution function show that the short-range atomic order of the liquid is very similar to that of the high-T solid, with a slight decrease of coordination number on passing from solid to liquid. The electronic densities of states in the two phases show only small differences. The results do not support a recent theory according to which very low dTm/dP values are expected for b.c.c. transition metals because of electron redistribution between s-p and d states.Comment: 27 pages, 10 figures. to be published in Journal of Chemical Physic

    Superfluidity versus localization in bulk 4He at zero temperature

    Full text link
    We present a zero-temperature quantum Monte Carlo calculation of liquid 4^4He immersed in an array of confining potentials. These external potentials are centered in the lattice sites of a fcc solid geometry and, by modifying their well depth and range, the system evolves from a liquid phase towards a progressively localized system which mimics a solid phase. The superfluid density decreases with increasing order, reaching a value ŌĀs/ŌĀ=0.079(16) \rho_{\rm s}/\rho = 0.079(16) when the Lindemann's ratio of the model equals the experimental value for solid 4^4He.Comment: 5 pages,5 figure

    Supersolidity in quantum films adsorbed on graphene and graphite

    Get PDF
    Using quantum Monte Carlo we have studied the superfluid density of the first layer of 4^4He and H2_2 adsorbed on graphene and graphite. Our main focus has been on the equilibrium ground state of the system, which corresponds to a registered 3√ó3\sqrt3 \times \sqrt3 phase. The perfect solid phase of H2_2 shows no superfluid signal whereas 4^4He has a finite but small superfluid fraction (0.67%). The introduction of vacancies in the crystal makes the superfluidity increase, showing values as large as 14% in 4^4He without destroying the spatial solid order.Comment: 5 pages, accepted for publication in PR

    The kinetics of homogeneous melting beyond the limit of superheating

    Get PDF
    Molecular dynamics simulation is used to study the time-scales involved in the homogeneous melting of a superheated crystal. The interaction model used is an embedded-atom model for Fe developed in previous work, and the melting process is simulated in the microcanonical (N,V,E)(N, V, E) ensemble. We study periodically repeated systems containing from 96 to 7776 atoms, and the initial system is always the perfect crystal without free surfaces or other defects. For each chosen total energy EE and number of atoms NN, we perform several hundred statistically independent simulations, with each simulation lasting for between 500 ps and 10 ns, in order to gather statistics for the waiting time ŌĄw\tau_{\rm w} before melting occurs. We find that the probability distribution of ŌĄw\tau_{\rm w} is roughly exponential, and that the mean value <ŌĄw><\tau_{\rm w} > depends strongly on the excess of the initial steady temperature of the crystal above the superheating limit identified by other researchers. The mean also depends strongly on system size in a way that we have quantified. For very small systems of ‚ąľ100\sim 100 atoms, we observe a persistent alternation between the solid and liquid states, and we explain why this happens. Our results allow us to draw conclusions about the reliability of the recently proposed Z method for determining the melting properties of simulated materials, and to suggest ways of correcting for the errors of the method.Comment: 19 pages, 8 figure

    Melting properties of a simple tight-binding model of transition metals: I.The region of half-filled d-band

    Full text link
    We present calculations of the free energy, and hence the melting properties, of a simple tight-binding model for transition metals in the region of d-band filling near the middle of a d-series, the parameters of the model being designed to mimic molybdenum. The melting properties are calculated for pressures ranging from ambient to several Mbar. The model is intended to be the simplest possible tight-binding representation of the two basic parts of the energy: first, the pairwise repulsion due to Fermi exclusion; and second, the d-band bonding energy described in terms of an electronic density of states that depends on structure. In addition to the number of d-electrons, the model contains four parameters, which are adjusted to fit the pressure dependent d-band width and the zero-temperature pressure-volume relation of Mo. We show that the resulting model reproduces well the phonon dispersion relations of Mo in the body-centred-cubic structure, as well as the radial distribution function of the high-temperature solid and liquid given by earlier first-principles simulations. Our free-energy calculations start from the free energy of the liquid and solid phases of the purely repulsive pair-potential model, without d-band bonding. The free energy of the full tight-binding model is obtained from this by thermodynamic integration. The resulting melting properties of the model are quite close to those given by earlier first-principles work on Mo. An interpretation of these melting properties is provided by showing how they are related to those of the purely repulsive model.Comment: 34 pages, 12 figures. Accepted for publication in Journal of Chemical Physic
    • ‚Ķ
    corecore