3,934 research outputs found
A device to characterize optical fibres
ATLAS is a general purpose experiment approved for the LHC collider at CERN.
An important component of the detector is the central hadronic calorimeter; for
its construction more than 600,000 Wave Length Shifting (WLS) fibres
(corresponding to a total length of 1,120 Km) have been used.
We have built and put into operation a dedicated instrument for the
measurement of light yield and attenuation length over groups of 20 fibres at a
time.
The overall accuracy achieved in the measurement of light yield
(attenuation length) is 1.5% (3%).
We also report the results obtained using this method in the quality control
of a large sample of fibres.Comment: 17 pages 20 figeres submitted to NIM journa
Prospects for the Search for a Standard Model Higgs Boson in ATLAS using Vector Boson Fusion
The potential for the discovery of a Standard Model Higgs boson in the mass
range m_H < 2 m_Z in the vector boson fusion mode has been studied for the
ATLAS experiment at the LHC. The characteristic signatures of additional jets
in the forward regions of the detector and of low jet activity in the central
region allow for an efficient background rejection. Analyses for the H -> WW
and H -> tau tau decay modes have been performed using a realistic simulation
of the expected detector performance. The results obtained demonstrate the
large discovery potential in the H -> WW decay channel and the sensitivity to
Higgs boson decays into tau-pairs in the low-mass region around 120 GeV.Comment: 20 pages, 13 ps figures, uses EPJ style fil
A PMT-Block test bench
The front-end electronics of the ATLAS hadronic calorimeter (Tile Cal) is
housed in a unit, called {\it PMT-Block}. The PMT-Block is a compact instrument
comprising a light mixer, a PMT together with its divider and a {\it 3-in-1}
card, which provides shaping, amplification and integration for the signals.
This instrument needs to be qualified before being assembled on the detector. A
PMT-Block test bench has been developed for this purpose. This test bench is a
system which allows fast, albeit accurate enough, measurements of the main
properties of a complete PMT-Block. The system, both hardware and software, and
the protocol used for the PMT-Blocks characterisation are described in detail
in this report. The results obtained in the test of about 10000 PMT-Blocks
needed for the instrumentation of the ATLAS (LHC-CERN) hadronic Tile
Calorimeter are also reported.Comment: 23 pages, 10 figure
The Evolution of FTK, a Real-Time Tracker for Hadron Collider Experiments
We describe the architecture evolution of the highly-parallel dedicated
processor FTK, which is driven by the simulation of LHC events at high
luminosity (1034 cm-2 s-1). FTK is able to provide precise on-line track
reconstruction for future hadronic collider experiments. The processor,
organized in a two-tiered pipelined architecture, execute very fast algorithms
based on the use of a large bank of pre-stored patterns of trajectory points
(first tier) in combination with full resolution track fitting to refine
pattern recognition and to determine off-line quality track parameters. We
describe here how the high luminosity simulation results have produced a new
organization of the hardware inside the FTK processor core.Comment: 11th ICATPP conferenc
Development of FTK architecture: a fast hardware track trigger for the ATLAS detector
The Fast Tracker (FTK) is a proposed upgrade to the ATLAS trigger system that
will operate at full Level-1 output rates and provide high quality tracks
reconstructed over the entire detector by the start of processing in Level-2.
FTK solves the combinatorial challenge inherent to tracking by exploiting the
massive parallelism of Associative Memories (AM) that can compare inner
detector hits to millions of pre-calculated patterns simultaneously. The
tracking problem within matched patterns is further simplified by using
pre-computed linearized fitting constants and leveraging fast DSP's in modern
commercial FPGA's. Overall, FTK is able to compute the helix parameters for all
tracks in an event and apply quality cuts in approximately one millisecond. By
employing a pipelined architecture, FTK is able to continuously operate at
Level-1 rates without deadtime. The system design is defined and studied using
ATLAS full simulation. Reconstruction quality is evaluated for single muon
events with zero pileup, as well as WH events at the LHC design luminosity. FTK
results are compared with the tracking capability of an offline algorithm.Comment: To be published in the proceedings of DPF-2009, Detroit, MI, July
2009, eConf C09072
Radiative corrections to the semileptonic and hadronic Higgs-boson decays H -> W W/Z Z -> 4 fermions
The radiative corrections of the strong and electroweak interactions are
calculated for the Higgs-boson decays H -> WW/ZZ -> 4f with semileptonic or
hadronic four-fermion final states in next-to-leading order. This calculation
is improved by higher-order corrections originating from heavy-Higgs-boson
effects and photonic final-state radiation off charged leptons. The W- and
Z-boson resonances are treated within the complex-mass scheme, i.e. without any
resonance expansion or on-shell approximation. The calculation essentially
follows our previous study of purely leptonic final states. The electroweak
corrections are similar for all four-fermion final states; for integrated
quantities they amount to some per cent and increase with growing Higgs-boson
mass M_H, reaching 7-8% at M_H \sim 500 GeV. For distributions, the corrections
are somewhat larger and, in general, distort the shapes. Among the QCD
corrections, which include corrections to interference contributions of the
Born diagrams, only the corrections to the squared Born diagrams turn out to be
relevant. These contributions can be attributed to the gauge-boson decays, i.e.
they approximately amount to \alpha_s/\pi for semileptonic final states and
2\alpha_s/\pi for hadronic final states. The discussed corrections have been
implemented in the Monte Carlo event generator PROPHECY4F.Comment: 29 pages, LaTeX, 30 postscript figure
The Higgs Working Group: Summary Report (2001)
Report of the Higgs working group for the Workshop `Physics at TeV
Colliders', Les Houches, France, 21 May - 1 June 2001. It contains 7 separate
sections: A. Theoretical Developments B. Higgs Searches at the Tevatron C.
Experimental Observation of an invisible Higgs Boson at LHC D. Search for the
Standard Model Higgs Boson using Vector Boson Fusion at the LHC E. Study of the
MSSM channel at the LHC F. Searching for Higgs Bosons in
Production G. Studies of Charged Higgs Boson Signals for the
Tevatron and the LHCComment: 120 pages, latex, many figures, proceedings of the Workshop `Physics
at TeV Colliders', Les Houches, France, 21 May - 1 June 2001, full Author
list included in paper. Typos corrected, author list and acknowledgements
completed. Convernors: D. Cavalli, A. Djouadi, K. Jakobs, A. Nikitenko, M.
Spira, C.E.M. Wagner, W.-M. Ya
Search for the exotic resonance in the NOMAD experiment
A search for exotic Theta baryon via Theta -> proton +Ks decay mode in the
NOMAD muon neutrino DIS data is reported. The special background generation
procedure was developed. The proton identification criteria are tuned to
maximize the sensitivity to the Theta signal as a function of xF which allows
to study the Theta production mechanism. We do not observe any evidence for the
Theta state in the NOMAD data. We provide an upper limit on Theta production
rate at 90% CL as 2.13 per 1000 of neutrino interactions.Comment: Accepted to European Physics Journal
A Study of Strange Particles Produced in Neutrino Neutral Current Interactions in the NOMAD Experiment
Results of a detailed study of strange particle production in neutrino
neutral current interactions are presented using the data from the NOMAD
experiment. Integral yields of neutral strange particles (K0s, Lambda,
Lambda-bar) have been measured. Decays of resonances and heavy hyperons with an
identified K0s or Lambda in the final state have been analyzed. Clear signals
corresponding to K* and Sigma(1385) have been observed. First results on the
measurements of the Lambda polarization in neutral current interactions have
been obtained.Comment: Accepted for publication in Nuclear Physics B as a rapid
communicatio
- …