14 research outputs found
Deep Synoptic Array Science: Polarimetry of 25 New Fast Radio Bursts Provides Insights into their Origins
We report on a full-polarization analysis of the first 25 as yet
non-repeating FRBs detected at 1.4 GHz by the 110-antenna Deep Synoptic Array
(DSA-110) during commissioning observations. We present details of the data
reduction, calibration, and analysis procedures developed for this novel
instrument. The data have 32 s time resolution and sensitivity to Faraday
rotation measures (RMs) between rad m. RMs are detected for
20 FRBs with magnitudes ranging from rad m. FRBs are
found to have high () linear-polarization fractions. The remaining
FRBs exhibit significant circular polarization (), or are either
partially depolarized () or unpolarized (). We investigate the
mechanism of depolarization, disfavoring stochastic RM variations within a
scattering screen as a dominant cause. Polarization-state and possible RM
variations are observed in the four FRBs with multiple sub-components, but only
one other FRB shows a change in polarization state. We combine the DSA-110
sample with polarimetry of previously published FRBs, and compare the
polarization properties of FRB sub-populations and FRBs with Galactic pulsars.
Although FRBs are typically far more polarized than the average profiles of
Galactic pulsars, and exhibit greater spread in polarization fractions than
pulsar single pulses, we find a remarkable similarity between FRB polarization
fractions and the youngest (characteristic ages yr) pulsars. Our
results support a scenario wherein FRB emission is intrinsically highly
linearly polarized, and where propagation effects within progenitor
magnetospheres can result in conversion to circular polarization and
depolarization. Young pulsar emission and magnetospheric-propagation geometries
may form a useful analogy for the origin of FRB polarization.Comment: 43 pages, 17 figure
Deep Synoptic Array Science: Implications of Faraday Rotation Measures of Localized Fast Radio Bursts
Faraday rotation measures (RMs) of fast radio bursts (FRBs) offer the
prospect of directly measuring extragalactic magnetic fields. We present an
analysis of the RMs of ten as yet non-repeating FRBs detected and localized to
host galaxies by the 110-antenna Deep Synoptic Array (DSA-110). We combine this
sample with published RMs of 15 localized FRBs, nine of which are repeating
sources. For each FRB in the combined sample, we estimate the host-galaxy
dispersion measure (DM) contributions and extragalactic RM. We find compelling
evidence that the extragalactic components of FRB RMs are often dominated by
contributions from the host-galaxy interstellar medium (ISM). Specifically, we
find that both repeating and as yet non-repeating FRBs show a correlation
between the host-DM and host-RM in the rest frame, and we find an
anti-correlation between extragalactic RM (in the observer frame) and redshift
for non-repeaters, as expected if the magnetized plasma is in the host galaxy.
Important exceptions to the ISM origin include a dense, magnetized circum-burst
medium in some repeating FRBs, and the intra-cluster medium (ICM) of host or
intervening galaxy clusters. We find that the estimated ISM magnetic-field
strengths, , are characteristically larger than those inferred from
Galactic radio pulsars. This suggests either increased ISM magnetization in FRB
hosts in comparison with the Milky Way, or that FRBs preferentially reside in
regions of increased magnetic-field strength within their hosts
Deep Synoptic Array science I: discovery of the host galaxy of FRB 20220912A
We report the detection and interferometric localization of the repeating
fast radio burst (FRB) source FRB 20220912A during commissioning observations
with the Deep Synoptic Array (DSA-110). Two bursts were detected from FRB
20220912A, one each on 2022 October 18 and 2022 October 25. The best-fit
position is (R.A. J2000, decl. J2000) = (23:09:04.9, +48:42:25.4), with a 90%
confidence error ellipse of arcsec and arcsec in right ascension
and declination respectively. The two bursts have disparate polarization
properties and temporal profiles. We find a Faraday rotation measure that is
consistent with the low value of rad m reported by CHIME/FRB. The
DSA-110 localization overlaps with the galaxy PSO J347.2702+48.7066 at a
redshift , which we identify as the likely host. PSO
J347.270248.7066 has a stellar mass of approximately ,
modest internal dust extinction, and a star-formation rate likely in excess of
yr. The host-galaxy contribution to the dispersion
measure is likely pc cm. The FRB 20220912A source is
therefore likely viewed along a tenuous plasma column through the host galaxy.Comment: 10 pages, 7 figures, 2 tables, submitted to AAS Journal
The 21 cm Power Spectrum from the Cosmic Dawn: First Results from the OVRO-LWA
The 21 cm transition of neutral hydrogen is opening an observational window into the Cosmic Dawn of the universe—the epoch of first star formation. We use 28 hr of data from the Owens Valley Radio Observatory Long Wavelength Array to place upper limits on the spatial power spectrum of 21 cm emission at z ≈ 18.4 (Δ_(21) ≾ 10^4 mK), and within the absorption feature reported by the EDGES experiment. In the process we demonstrate the first application of the double Karhunen–Loève transform for foreground filtering, and diagnose the systematic errors that are currently limiting the measurement. We also provide an updated model for the angular power spectrum of low-frequency foreground emission measured from the northern hemisphere, which can be used to refine sensitivity forecasts for next-generation experiments
COMAP Early Science: VII. Prospects for CO Intensity Mapping at Reionization
We introduce COMAP-EoR, the next generation of the Carbon Monoxide Mapping
Array Project aimed at extending CO intensity mapping to the Epoch of
Reionization. COMAP-EoR supplements the existing 30 GHz COMAP Pathfinder with
two additional 30 GHz instruments and a new 16 GHz receiver. This combination
of frequencies will be able to simultaneously map CO(1--0) and CO(2--1) at
reionization redshifts () in addition to providing a significant
boost to the sensitivity of the Pathfinder. We examine a set of
existing models of the EoR CO signal, and find power spectra spanning several
orders of magnitude, highlighting our extreme ignorance about this period of
cosmic history and the value of the COMAP-EoR measurement. We carry out the
most detailed forecast to date of an intensity mapping cross-correlation, and
find that five out of the six models we consider yield signal to noise ratios
(S/N) for COMAP-EoR, with the brightest reaching a S/N above 400.
We show that, for these models, COMAP-EoR can make a detailed measurement of
the cosmic molecular gas history from , as well as probe the
population of faint, star-forming galaxies predicted by these models to be
undetectable by traditional surveys. We show that, for the single model that
does not predict numerous faint emitters, a COMAP-EoR-type measurement is
required to rule out their existence. We briefly explore prospects for a
third-generation Expanded Reionization Array (COMAP-ERA) capable of detecting
the faintest models and characterizing the brightest signals in extreme detail.Comment: Paper 7 of 7 in series. 19 pages, 10 figures, to be submitted to Ap
COMAP Early Science: IV. Power Spectrum Methodology and Results
We present the power spectrum methodology used for the first-season COMAP
analysis, and assess the quality of the current data set. The main results are
derived through the Feed-feed Pseudo-Cross-Spectrum (FPXS) method, which is a
robust estimator with respect to both noise modeling errors and experimental
systematics. We use effective transfer functions to take into account the
effects of instrumental beam smoothing and various filter operations applied
during the low-level data processing. The power spectra estimated in this way
have allowed us to identify a systematic error associated with one of our two
scanning strategies, believed to be due to residual ground or atmospheric
contamination. We omit these data from our analysis and no longer use this
scanning technique for observations. We present the power spectra from our
first season of observing and demonstrate that the uncertainties are
integrating as expected for uncorrelated noise, with any residual systematics
suppressed to a level below the noise. Using the FPXS method, and combining
data on scales we estimate , the first direct 3D
constraint on the clustering component of the CO(1-0) power spectrum in the
literature.Comment: Paper 4 of 7 in series. 18 pages, 11 figures, as accepted in Ap
COMAP Early Science: VI. A First Look at the COMAP Galactic Plane Survey
We present early results from the COMAP Galactic Plane Survey conducted
between June 2019 and April 2021, spanning in Galactic
longitude and |b|<1.\!\!^{\circ}5 in Galactic latitude with an angular
resolution of . The full survey will span -
and will be the first large-scale radio continuum survey at
GHz with sub-degree resolution. We present initial results from the first part
of the survey, including diffuse emission and spectral energy distributions
(SEDs) of HII regions and supernova remnants. Using low and high frequency
surveys to constrain free-free and thermal dust emission contributions, we find
evidence of excess flux density at GHz in six regions that we interpret
as anomalous microwave emission. Furthermore we model UCHII contributions using
data from the GHz CORNISH catalogue and reject this as the cause of the
GHz excess. Six known supernova remnants (SNR) are detected at GHz,
and we measure spectral indices consistent with the literature or show evidence
of steepening. The flux density of the SNR W44 at GHz is consistent with
a power-law extrapolation from lower frequencies with no indication of spectral
steepening in contrast with recent results from the Sardinia Radio Telescope.
We also extract five hydrogen radio recombination lines to map the warm ionized
gas, which can be used to estimate electron temperatures or to constrain
continuum free-free emission. The full COMAP Galactic plane survey, to be
released in 2023/2024, will be an invaluable resource for Galactic
astrophysics.Comment: Paper 6 of 7 in series. 28 pages, 10 figures, submitted to Ap
COMAP Early Science: III. CO Data Processing
We describe the first season COMAP analysis pipeline that converts raw
detector readouts to calibrated sky maps. This pipeline implements four main
steps: gain calibration, filtering, data selection, and map-making. Absolute
gain calibration relies on a combination of instrumental and astrophysical
sources, while relative gain calibration exploits real-time total-power
variations. High efficiency filtering is achieved through spectroscopic
common-mode rejection within and across receivers, resulting in nearly
uncorrelated white noise within single-frequency channels. Consequently,
near-optimal but biased maps are produced by binning the filtered time stream
into pixelized maps; the corresponding signal bias transfer function is
estimated through simulations. Data selection is performed automatically
through a series of goodness-of-fit statistics, including and
multi-scale correlation tests. Applying this pipeline to the first-season COMAP
data, we produce a dataset with very low levels of correlated noise. We find
that one of our two scanning strategies (the Lissajous type) is sensitive to
residual instrumental systematics. As a result, we no longer use this type of
scan and exclude data taken this way from our Season 1 power spectrum
estimates. We perform a careful analysis of our data processing and observing
efficiencies and take account of planned improvements to estimate our future
performance. Power spectrum results derived from the first-season COMAP maps
are presented and discussed in companion papers.Comment: Paper 3 of 7 in series. 26 pages, 23 figures, submitted to Ap
COMAP Early Science: II. Pathfinder Instrument
Line intensity mapping (LIM) is a new technique for tracing the global
properties of galaxies over cosmic time. Detection of the very faint signals
from redshifted carbon monoxide (CO), a tracer of star formation, pushes the
limits of what is feasible with a total-power instrument. The CO Mapping
Project (COMAP) Pathfinder is a first-generation instrument aiming to prove the
concept and develop the technology for future experiments, as well as
delivering early science products. With 19 receiver channels in a hexagonal
focal plane arrangement on a 10.4 m antenna, and an instantaneous 26-34 GHz
frequency range with 2 MHz resolution, it is ideally suited to measuring
CO(=1-0) from . In this paper we discuss strategies for designing
and building the Pathfinder and the challenges that were encountered. The
design of the instrument prioritized LIM requirements over those of ancillary
science. After a couple of years of operation, the instrument is well
understood, and the first year of data is already yielding useful science
results. Experience with this Pathfinder will drive the design of the next
generations of experiments.Comment: Paper 2 of 7 in series. 27 pages, 28 figures, submitted to Ap