4,690 research outputs found

    Transient sensor development

    Get PDF
    Pulse width/amplitude- and noise-sensors are updated to integrated circuit design concepts, and rise time/amplitude sensor design is reduced to an operational prototype to make all the sensors compatable for one system operation. Therefore, transients interfering with the design operation of receivers could be individually isolated and identified

    Pulse transducer with artifact signal attenuator

    Get PDF
    An artifact signal attenuator for a pulse rate sensor is described. The circuit for attenuating background noise signals is connected with a pulse rate transducer which has a light source and a detector for light reflected from blood vessels of a living body. The heart signal provided consists of a modulated dc signal voltage indicative of pulse rate. The artifact signal resulting from light reflected from the skin of the body comprises both a constant dc signal voltage and a modulated dc signal voltage. The amplitude of the artifact signal is greater and the frequency less than that of the heart signal. The signal attenuator circuit includes an operational amplifier for canceling the artifact signal from the output signal of the transducer and has the capability of meeting packaging requirements for wrist-watch-size packages

    Constraints on Dark Energy from Supernovae, Gamma Ray Bursts, Acoustic Oscillations, Nucleosynthesis and Large Scale Structure and the Hubble constant

    Get PDF
    The luminosity distance vs. redshift law is now measured using supernovae and gamma ray bursts, and the angular size distance is measured at the surface of last scattering by the CMB and at z = 0.35 by baryon acoustic oscillations. In this paper this data is fit to models for the equation of state with w = -1, w = const, and w(z) = w_0+w_a(1-a). The last model is poorly constrained by the distance data, leading to unphysical solutions where the dark energy dominates at early times unless the large scale structure and acoustic scale constraints are modified to allow for early time dark energy effects. A flat LambdaCDM model is consistent with all the data.Comment: 19 pages Latex with 8 Postscript figure files. A new reference and constraint, w vs w' contour plots updated. Version accepted by the the Ap

    Delay Differential Analysis of Seizures in Multichannel Electrocorticography Data

    Get PDF
    High-density electrocorticogram (ECoG) electrodes are capable of recording neurophysiological data with high temporal resolution with wide spatial coverage. These recordings are a window to understanding how the human brain processes information and subsequently behaves in healthy and pathologic states. Here, we describe and implement delay differential analysis (DDA) for the characterization of ECoG data obtained from human patients with intractable epilepsy. DDA is a time-domain analysis framework based on embedding theory in nonlinear dynamics that reveals the nonlinear invariant properties of an unknown dynamical system. The DDA embedding serves as a low-dimensional nonlinear dynamical basis onto which the data are mapped. This greatly reduces the risk of overfitting and improves the method's ability to fit classes of data. Since the basis is built on the dynamical structure of the data, preprocessing of the data (e.g., filtering) is not necessary. We performed a large-scale search for a DDA model that best fit ECoG recordings using a genetic algorithm to qualitatively discriminate between different cortical states and epileptic events for a set of 13 patients. A single DDA model with only three polynomial terms was identified. Singular value decomposition across the feature space of the model revealed both global and local dynamics that could differentiate electrographic and electroclinical seizures and provided insights into highly localized seizure onsets and diffuse seizure terminations. Other common ECoG features such as interictal periods, artifacts, and exogenous stimuli were also analyzed with DDA. This novel framework for signal processing of seizure information demonstrates an ability to reveal unique characteristics of the underlying dynamics of the seizure and may be useful in better understanding, detecting, and maybe even predicting seizures

    A Comparison Between African-American Superintendents and School Board Members on Leadership Attributes That Contribute to Superintendent Longevity

    Get PDF
    The purpose of this study was to explore whether the ratings of leadership attributes by African-American superintendents and their respective school board members are comparable and whether the superintendents’ self-ratings are related to their longevity as superintendents. The rating instrument was designed to address several important leadership qualities gleaned from the literature on leadership styles and a range of other theories and studies on effective leadership. These qualities were then consolidated into four attribute categories (skills, qualities, knowledge, and emotional intelligence/EQ) that capture the essential contextual work of school district superintendents. The results of this conceptual study provide valuable information to current and future school superintendents on the leadership attributes rated by their colleagues and school board members to be essential for superintendents’ success and longevity

    An adaptive-binning method for generating constant-uncertainty/constant-significance light curves with Fermi-LAT data

    Full text link
    We present a method enabling the creation of constant-uncertainty/constant-significance light curves with the data of the Fermi-Large Area Telescope (LAT). The adaptive-binning method enables more information to be encapsulated within the light curve than with the fixed-binning method. Although primarily developed for blazar studies, it can be applied to any sources. This method allows the starting and ending times of each interval to be calculated in a simple and quick way during a first step. The reported mean flux and spectral index (assuming the spectrum is a power-law distribution) in the interval are calculated via the standard LAT analysis during a second step. The absence of major caveats associated with this method has been established by means of Monte-Carlo simulations. We present the performance of this method in determining duty cycles as well as power-density spectra relative to the traditional fixed-binning method.Comment: 17 pages, 13 figures, 5 tables. Submitted to A&

    Chandra observation of the fast X-ray transient IGR J17544-2619: evidence for a neutron star?

    Full text link
    IGR J17544-2619 belongs to a distinct group of at least seven fast X-ray transients that cannot readily be associated with nearby flare stars or pre-main sequence stars and most probably are X-ray binaries with wind accretion. Sofar, the nature of the accretor has been determined in only one case (SAX J1819.3-2525/V4641 Sgr). We carried out a 20 ks Chandra ACIS-S observation of IGR J17544-2619 which shows the source in quiescence going into outburst. The Chandra position confirms the previous tentative identification of the optical counterpart, a blue O9Ib supergiant at 3 to 4 kpc (Pellizza, Chaty & Negueruela, in prep.). This is the first detection of a fast X-ray transient in quiescence. The quiescent spectrum is very soft. The photon index of 5.9+/-1.2 (90% confidence error margin) is much softer than 6 quiescent black hole candidates that were observed with Chandra ACIS-S (Kong et al. 2002; Tomsick et al. 2003). Assuming that a significant fraction of the quiescent photons comes from the accretor and not the donor star, we infer that the accretor probably is a neutron star. A fit to the quiescent spectrum of the neutron star atmosphere model developed by Pavlov et al. (1992) and Zavlin et al. (1996) implies an unabsorbed quiescent 0.5--10 keV luminosity of (5.2+/-1.3) x 10^32 erg/s. We speculate on the nature of the brief outbursts.Comment: accepted for publication in Astronomy & Astrophysic
    • …
    corecore