210 research outputs found

    Imaging on a Sphere with Interferometers: the Spherical Wave Harmonic Transform

    Get PDF
    I present an exact and explicit solution to the scalar (Stokes flux intensity) radio interferometer imaging equation on a spherical surface which is valid also for non-coplanar interferometer configurations. This imaging equation is comparable to ww-term imaging algorithms, but by using a spherical rather than a Cartesian formulation this term has no special significance. The solution presented also allows direct identification of the scalar (spin 0 weighted) spherical harmonics on the sky. The method should be of interest for future multi-spacecraft interferometers, wide-field imaging with non-coplanar arrays, and CMB spherical harmonic measurements using interferometers.Comment: (Fixed references missing in previous arxiv version). This is a pre-copyedited, author-produced PDF of an article accepted for publication in MNRAS following peer revie

    A generalised Measurement Equation and van Cittert-Zernike theorem for wide-field radio astronomical interferometry

    Full text link
    We derive a generalised van Cittert-Zernike (vC-Z) theorem for radio astronomy that is valid for partially polarized sources over an arbitrarily wide field-of-view (FoV). The classical vC-Z theorem is the theoretical foundation of radio astronomical interferometry, and its application is the basis of interferometric imaging. Existing generalised vC-Z theorems in radio astronomy assume, however, either paraxiality (narrow FoV) or scalar (unpolarized) sources. Our theorem uses neither of these assumptions, which are seldom fulfilled in practice in radio astronomy, and treats the full electromagnetic field. To handle wide, partially polarized fields, we extend the two-dimensional electric field (Jones vector) formalism of the standard "Measurement Equation" of radio astronomical interferometry to the full three-dimensional formalism developed in optical coherence theory. The resulting vC-Z theorem enables all-sky imaging in a single telescope pointing, and imaging using not only standard dual-polarized interferometers (that measure 2-D electric fields), but also electric tripoles and electromagnetic vector-sensor interferometers. We show that the standard 2-D Measurement Equation is easily obtained from our formalism in the case of dual-polarized antenna element interferometers. We find, however, that such dual-polarized interferometers can have polarimetric aberrations at the edges of the FoV that are often correctable. Our theorem is particularly relevant to proposed and recently developed wide FoV interferometers such as LOFAR and SKA, for which direction-dependent effects will be important.Comment: To be published in MNRA

    Sampling errors of correlograms with and without sample mean removal for higher-order complex white noise with arbitrary mean

    Full text link
    We derive the bias, variance, covariance, and mean square error of the standard lag windowed correlogram estimator both with and without sample mean removal for complex white noise with an arbitrary mean. We find that the arbitrary mean introduces lag dependent covariance between different lags of the correlogram estimates in spite of the lack of covariance in white noise for non-zeros lags. We provide a heuristic rule for when the sample mean should be, and when it should not be, removed if the true mean is not known. The sampling properties derived here are useful is assesing the general statistical performance of autocovariance and autocorrelation estimators in different parameter regimes. Alternatively, the sampling properties could be used as bounds on the detection of a weak signal in general white noise.Comment: 11 pages, 2 figures, To be published in Journal of Time Series Analysi

    Deriving the sampling errors of correlograms for general white noise

    Full text link
    We derive the second-order sampling properties of certain autocovariance and autocorrelation estimators for sequences of independent and identically distributed samples. Specifically, the estimators we consider are the classic lag windowed correlogram, the correlogram with subtracted sample mean, and the fixed-length summation correlogram. For each correlogram we derive explicit formulas for the bias, covariance, mean square error and consistency for generalised higher-order white noise sequences. In particular, this class of sequences may have non-zero means, be complexed valued and also includes non-analytical noise signals. We find that these commonly used correlograms exhibit lag dependent covariance despite the fact that these processes are white and hence by definition do not depend on lag.Comment: Submitted to Biometrik

    On the similarity of Information Energy to Dark Energy

    Full text link
    Information energy is shown here to have properties similar to those of dark energy. The energy associated with each information bit of the universe is found to be defined identically to the characteristic energy of a cosmological constant. Two independent methods are used to estimate the universe information content of ~10^91 bits, a value that provides an information energy total comparable to that of the dark energy. Information energy is also found to have a significantly negative equation of state parameter, w < -0.4, and thus exerts a negative pressure, similar to dark energy.Comment: 5 pages, no figures, no table

    ELVIS - ELectromagnetic Vector Information Sensor

    Get PDF
    The ELVIS instrument was recently proposed by the authors for the Indian Chandrayaan-1 mission to the Moon and is presently under consideration by the Indian Space Research Organisation (ISRO). The scientific objective of ELVIS is to explore the electromagnetic environment of the moon. ELVIS samples the full three-dimensional (3D) electric field vector, E(x,t), up to 18 MHz, with selective Nyqvist frequency bandwidths down to 5 kHz, and one component of the magnetic field vector, B(x,t), from a few Hz up to 100 kHz.As a transient detector, ELVIS is capable of detecting pulses with a minimum pulse width of 5 ns. The instrument comprises three orthogonal electric dipole antennas, one magnetic search coil antenna and a four-channel digital sampling system, utilising flexible digital down conversion and filtering together with state-of-the-art onboard digital signal processing.Comment: 8 pages, 3 figures. Submitted to the DGLR Int. Symposium "To Moon and Beyond", Bremen, Germany, 2005. Companion paper to arXiv:astro-ph/050921

    Statistical properties of ionospheric stimulated electromagnetic emissions

    Get PDF
    We have analysed the statistical properties of the stimulated electromagnetic emissions (SEE) spectral features in the steady state, reached after a long period of continuous HF pumping of the ionosphere in experiments performed at the Sura ionospheric radio research facility in Russia. Using a digital filter bank method, we have been able to analyse complex valued signals within narrow frequency bands. Each of the SEE spectral features are thereby separated into a number of narrow spectral components. Statistical tests were performed for all these spectral components and the distributions of the spectral amplitudes and phases were evaluated. Also, a test for sinusoidal components was performed. These tests showed that all observed SEE features were indistinguishable from coloured Gaussian noise. The test results exclude that the SEE features can be the result of a single isolated coherent process, but does not rule out that there could be many statistically independent parametric wave-wave processes taking place simultaneously at various parts of the HF-pumped ionosphere, as long as the superposition from all these is incoherent. Furthermore, from the test results, we cannot exclude the possibility that the waveforms of some, or all, of the SEE features may be chaotic
    • …
    corecore