245 research outputs found
Efficient Bayesian Inference for Generalized Bradley-Terry Models
The Bradley-Terry model is a popular approach to describe probabilities of
the possible outcomes when elements of a set are repeatedly compared with one
another in pairs. It has found many applications including animal behaviour,
chess ranking and multiclass classification. Numerous extensions of the basic
model have also been proposed in the literature including models with ties,
multiple comparisons, group comparisons and random graphs. From a computational
point of view, Hunter (2004) has proposed efficient iterative MM
(minorization-maximization) algorithms to perform maximum likelihood estimation
for these generalized Bradley-Terry models whereas Bayesian inference is
typically performed using MCMC (Markov chain Monte Carlo) algorithms based on
tailored Metropolis-Hastings (M-H) proposals. We show here that these MM\
algorithms can be reinterpreted as special instances of
Expectation-Maximization (EM) algorithms associated to suitable sets of latent
variables and propose some original extensions. These latent variables allow us
to derive simple Gibbs samplers for Bayesian inference. We demonstrate
experimentally the efficiency of these algorithms on a variety of applications
Bayesian nonparametric models for ranked data
We develop a Bayesian nonparametric extension of the popular Plackett-Luce
choice model that can handle an infinite number of choice items. Our framework
is based on the theory of random atomic measures, with the prior specified by a
gamma process. We derive a posterior characterization and a simple and
effective Gibbs sampler for posterior simulation. We develop a time-varying
extension of our model, and apply it to the New York Times lists of weekly
bestselling books.Comment: NIPS - Neural Information Processing Systems (2012
Scalable Bayesian nonparametric regression via a Plackett-Luce model for conditional ranks
We present a novel Bayesian nonparametric regression model for covariates X
and continuous, real response variable Y. The model is parametrized in terms of
marginal distributions for Y and X and a regression function which tunes the
stochastic ordering of the conditional distributions F(y|x). By adopting an
approximate composite likelihood approach, we show that the resulting posterior
inference can be decoupled for the separate components of the model. This
procedure can scale to very large datasets and allows for the use of standard,
existing, software from Bayesian nonparametric density estimation and
Plackett-Luce ranking estimation to be applied. As an illustration, we show an
application of our approach to a US Census dataset, with over 1,300,000 data
points and more than 100 covariates
A Hierarchical Bayesian Framework for Constructing Sparsity-inducing Priors
Variable selection techniques have become increasingly popular amongst
statisticians due to an increased number of regression and classification
applications involving high-dimensional data where we expect some predictors to
be unimportant. In this context, Bayesian variable selection techniques
involving Markov chain Monte Carlo exploration of the posterior distribution
over models can be prohibitively computationally expensive and so there has
been attention paid to quasi-Bayesian approaches such as maximum a posteriori
(MAP) estimation using priors that induce sparsity in such estimates. We focus
on this latter approach, expanding on the hierarchies proposed to date to
provide a Bayesian interpretation and generalization of state-of-the-art
penalized optimization approaches and providing simultaneously a natural way to
include prior information about parameters within this framework. We give
examples of how to use this hierarchy to compute MAP estimates for linear and
logistic regression as well as sparse precision-matrix estimates in Gaussian
graphical models. In addition, an adaptive group lasso method is derived using
the framework.Comment: Submitted for publication; corrected typo
The Ties that Bind: Kymlicka and the Problem of Political Unity in Multination States
As asserted by Will Kymlicka, the recognition and accommodation of national minorities leads to a dilemma. Indeed, if denying them these rights can contribute to their willingness to secede, allowing them to self-govern can also ultimately lead to the weakening of their ties with the state in which they are integrated. This tension well described in Kymlicka’s Multicultural Citizenship and in his later works remains nonetheless without an explicit solution. This text addresses this question by suggesting that the dialogical dynamic behind the recognition and accommodation of national minorities hides a purely political patriotism stemming from the neo-republican tradition that is complementary to the nationalist sense of attachment that members of national minorities will inevitably come to feel toward their societal culture
Modelling individual migration patterns using a Bayesian nonparametric approach for capture-recapture data
We present a Bayesian nonparametric approach for modelling wildlife migration patterns using capture–recapture (CR) data. Arrival times of individuals are modelled in continuous time and assumed to be drawn from a Poisson process with unknown intensity function, which is modelled via a flexible nonparametric mixture model. The proposed CR framework allows us to estimate the following: (i) the total number of individuals that arrived at the site, (ii) their times of arrival and departure, and hence their stopover duration, and (iii) the density of arrival times, providing a smooth representation of the arrival pattern of the individuals at the site. We apply the model to data on breeding great crested newts (Triturus cristatus) and on migrating reed warblers (Acrocephalus scirpaceus). For the former, the results demonstrate the staggered arrival of individuals at the breeding ponds and suggest that males tend to arrive earlier than females. For the latter, they demonstrate the arrival of migrating flocks at the stopover site and highlight the considerable difference in stopover duration between caught and not-caught individuals
Bayesian nonparametrics for Sparse Dynamic Networks
We propose a Bayesian nonparametric prior for time-varying networks. To each
node of the network is associated a positive parameter, modeling the
sociability of that node. Sociabilities are assumed to evolve over time, and
are modeled via a dynamic point process model. The model is able to (a) capture
smooth evolution of the interaction between nodes, allowing edges to
appear/disappear over time (b) capture long term evolution of the sociabilities
of the nodes (c) and yield sparse graphs, where the number of edges grows
subquadratically with the number of nodes. The evolution of the sociabilities
is described by a tractable time-varying gamma process. We provide some
theoretical insights into the model and apply it to three real world datasets.Comment: 10 pages, 8 figure
Classification
National audienceLa classification a pour objet de regrouper des données en classes possédant des caractéristiques similaires. La classification peut être supervisée lorsque l'on dispose d'un ensemble d'apprentissage labellisé, semi-supervisée ou non supervisée. Elle apparaît dans de nombreuses applications telles que la fouille de texte, la reconnaissance vocale ou l'analyse de données génomiques. L'objectif de cette session est d'offrir un panorama des approches statistiques pour la classification de données (modèles de mélange, SVM, processus de Dirichlet, etc.) et d'en présenter diverses applications
- …