2 research outputs found

    Separation of Hemicellulose and Cellulose from Wood Pulp by Means of Ionic Liquid/Cosolvent Systems

    No full text
    Pulp of high cellulose content, also known as dissolving pulp, is needed for many purposes, including the production of cellulosic fibers and films. Paper-grade pulp, which is rich in hemicellulose, could be a cheap source but must be refined. Hitherto, hemicellulose extraction procedures suffered from a loss of cellulose and the non-recoverability of unaltered hemicelluloses. Herein, an environmentally benign fractionation concept is presented, using mixtures of a cosolvent (water, ethanol, or acetone) and the cellulose dissolving ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIM OAc). This cosolvent addition was monitored using Kamlet–Taft parameters, and appropriate stirring conditions (3 h at 60 °C) were maintained. This allowed the fractionation of a paper-grade kraft pulp into a separated cellulose and a regenerated hemicellulose fraction. Both of these exhibited high levels of purity, without any yield losses or depolymerization. Thus, this process represents an ecologically and economically efficient alternative in producing dissolving pulp of highest purity

    Dialkyl Phosphate-Related Ionic Liquids as Selective Solvents for Xylan

    No full text
    Herein we describe a possibility of selective dissolution of xylan, the most important type of hemicellulose, from <i>Eucalyptus globulus</i> kraft pulp using ionic liquids (ILs). On the basis of the IL 1-butyl-3-methylimidazolium dimethyl phosphate, which is well-known to dissolve pulp, the phosphate anion was modified by substituting one oxygen atom for sulfur and selenium, respectively. This alteration reduces the hydrogen bond basicity of the IL and therefore prevents dissolution of cellulose fibers, whereas the less ordered xylan is still dissolved. <sup>1</sup>H NMR spectra of model solutions and Kamlet–Taft parameters were used to quantify the solvent polarity and hydrogen bond acceptor properties of the ILs. These parameters have been correlated to their ability to dissolve xylan and cellulose, which was monitored by <sup>13</sup>C NMR spectroscopy. It was found that the selectivity for xylan dissolution increases to a certain extent with decreasing hydrogen-bond-accepting ability of anions of the ILs
    corecore