1,031 research outputs found

    Tomographic Reconstruction from a Few Views: A Multi-Marginal Optimal Transport Approach

    Get PDF
    19 pagesInternational audienceIn this article, we focus on tomographic reconstruction. The problem is to determine the shape of the interior interface using a tomographic approach while very few X-ray radiographs are performed. We use a multi-marginal optimal transport approach. Preliminary numerical results are presented

    Molecular Diagnostics in the Mycosphaerella Leaf Spot Disease Complex of Banana and for Radopholus similis

    Get PDF
    Mycosphaerella leaf spots and nematodes threaten banana cultivation worldwide. The Mycosphaerella disease complex involves three related ascomycetous fungi: Mycosphaerella fijiensis, M. musicola and M. eumusae. The exact distribution of these three species and their disease epidemiology remain unclear, since their symptoms and life cycles are rather similar. Diagnosing these diseases and the respective causal agents is based on the presence of host symptoms and fungal fruiting structures, but is time consuming and not conducive to preventive management. In the present study, we developed rapid and robust species-specific diagnostic tools to detect and quantify M. fijiensis, M. musicola and M. eumusae. Conventional species-specific PCR primers were developed based on the actin gene that detected as little as 100, 1 and 10 pg/µl DNA from, respectively, M. fijiensis, M. musicola and M. eumusae. Furthermore, TaqMan real-time quantitative PCR assays that were developed based on the ß-tubulin gene detected quantities as low as 1 pg/µl DNA of each species from pure cultures and 1.6 pg/µl DNA/mg of M. fijiensis from dry leaf tissue. The efficacy of the tests was validated using naturally infected banana leaves. Similar technology has been used to develop a quantitative PCR assay for the banana burrowing nematode, Radopholus similis, which is currently being validate

    ST Quartz Acoustic Wave Sensors with Sectional Guiding Layers

    Get PDF
    We report the effect of removing a section of guiding layer from the propagation paths of ST-quartz Love wave sensors; this offers the ease of fabrication of a polymer guiding layer whilst retaining the native surface of the quartz which may then be used for the attachment of a sensitizing layer. Data is presented for rigid and viscous loading, which indicates a small reduction in mass sensitivity compared to a Love wave device. Biosensing capabilities of these discontinuous ‘sectional’ guiding layer devices are demonstrated using protein adsorption from solution

    Quality Control in Crowdsourced Object Segmentation

    Get PDF
    International audienceThis paper explores processing techniques to deal with noisy data in crowdsourced object segmentation tasks. We use the data collected with "Click'n'Cut", an online interactive segmentation tool, and we perform several experiments towards improving the segmentation results. First, we introduce different superpixel-based techniques to filter users' traces, and assess their impact on the segmentation result. Second, we present different criteria to detect and discard the traces from potential bad users, resulting in a remarkable increase in performance. Finally, we show a novel superpixel-based segmentation algorithm which does not require any prior filtering and is based on weighting each user's contribution according to his/her level of expertise

    A Proof Assistant Based Formalisation of a Subset of Sequential Core Erlang

    Get PDF
    We present a proof-assistant-based formalisation of a subset of Erlang, intended to serve as a base for proving refactorings correct. After discussing how we reused concepts from related work, we show the syntax and semantics of our formal description, including the abstractions involved (e.g. the concept of a closure). We also present essential properties of the formalisation (e.g. determinism) along with the summary of their machine-checked proofs. Finally, we prove expression pattern equivalences which can be interpreted as simple local refactorings

    Psychopathology and health-related quality of life as patient-reported treatment outcomes: evaluation of concordance between the Brief Symptom Inventory (BSI) and the Short Form-36 (SF-36) in psychiatric outpatients

    Get PDF
    Purpose Treatment outcome for common psychiatric disorders, such as mood and anxiety disorders, is usually assessed by self-report measures regarding psychopathology [e.g., via Brief Symptom Inventory (BSI)]. However, health-related quality of life [as measured by the 36-item Short-Form Health Survey (SF-36)] may be a useful supplementary outcome domain for routine outcome monitoring (ROM). To date, the assessment of both outcomes has become fairly commonplace with severe mental illness, but this is not yet the case for common psychiatric disorders. The present study examined among outpatients with common psychiatric disorders whether aggregate assessments of change across treatment regarding psychopathology and health-related quality of life yield similar results and effect sizes. Methods We compared treatment outcome on the BSI and the SF-36 in a sample of 13,423 outpatients. The concordance of both instruments was assessed at various time points during treatment. Results Scores on both instruments were associated, but not so strongly to suggest they measure the same underlying construct. The SF-36 scales presented a varied picture of treatment outcome: understandably, patients changed more on the mental component scales than on physical component scales. Outcome according to the BSI was quite similar to outcome according to scales of the SF-36 that showed the largest change. Conclusions Although (mental health) scores on both instruments are associated, adding the SF-36 in addition to the BSI in treatment evaluation research produces valuable information as the SF-36 measures a broader concept and contains physical/functional component scales, resulting in a more complete clinical picture of individual patients.Stress-related psychiatric disorders across the life spa

    Effect of ultrasound on bone fracture healing:A computational mechanobioregulatory model

    Get PDF
    Bone healing process is a complicated phenomenon regulated by biochemical and mechanical signals. Experimental studies have shown that ultrasound (US) accelerates bone ossification and has a multiple influence on cell differentiation and angiogenesis. In a recent work of the authors, a bioregulatory model for providing bone-healing predictions was addressed, taking into account for the first time the salutary effect of US on the involved angiogenesis. In the present work, a mechanobioregulatory model of bone solidification under the US presence incorporating also the mechanical environment on the regeneration process, which is known to affect cellular processes, is presented. An iterative procedure is adopted, where the finite element method is employed to compute the mechanical stimuli at the linear elastic phases of the poroelastic callus region and a coupled system of partial differential equations to simulate the enhancement by the US cell angiogenesis process and thus the oxygen concentration in the fractured area. Numerical simulations with and without the presence of US that illustrate the influence of progenitor cells' origin in the healing pattern and the healing rate and simultaneously demonstrate the salutary effect of US on bone repair are presented and discussed

    Instability driven fragmentation of nanoscale fractal islands

    Full text link
    Formation and evolution of fragmentation instabilities in fractal islands, obtained by deposition of silver clusters on graphite, are studied. The fragmentation dynamics and subsequent relaxation to the equilibrium shapes are controlled by the deposition conditions and cluster composition. Sharing common features with other materials' breakup phenomena, the fragmentation instability is governed by the length-to-width ratio of the fractal arms.Comment: 5 pages, 3 figures, Physical Review Letters in pres
    • …