705 research outputs found
Self-Paced Multitask Learning with Shared Knowledge
This paper introduces self-paced task selection to multitask learning, where
instances from more closely related tasks are selected in a progression of
easier-to-harder tasks, to emulate an effective human education strategy, but
applied to multitask machine learning. We develop the mathematical foundation
for the approach based on iterative selection of the most appropriate task,
learning the task parameters, and updating the shared knowledge, optimizing a
new bi-convex loss function. This proposed method applies quite generally,
including to multitask feature learning, multitask learning with alternating
structure optimization, etc. Results show that in each of the above
formulations self-paced (easier-to-harder) task selection outperforms the
baseline version of these methods in all the experiments
Recommended from our members
Language acquisition and machine learning
In this paper, we review recent progress in the field of machine learning and examine its implications for computational models of language acquisition. As a framework for understanding this research, we propose four component tasks involved in learning from experience - aggregation, clustering, characterization, and storage. We then consider four common problems studied by machine learning researchers - learning from examples, heuristics learning, conceptual clustering, and learning macro-operators - describing each in terms of our framework. After this, we turn to the problem of grammar acquisition, relating this problem to other learning tasks and reviewing four AI systems that have addressed the problem. Finally, we note some limitations of the earlier work and propose an alternative approach to modeling the mechanisms underlying language acquisition
Recommended from our members
Machine learning : techniques and foundations
The field of machine learning studies computational methods for acquiring new knowledge, new skills, and new ways to organize existing knowledge. In this paper we present some of the basic techniques and principles that underlie AI research on learning, including methods for learning from examples, learning in problem solving, learning by analogy, grammar acquisition, and machine discovery. In each case, we illustrate the techniques with paradigmatic examples
- …