385 research outputs found
Recommended from our members
Language acquisition and machine learning
In this paper, we review recent progress in the field of machine learning and examine its implications for computational models of language acquisition. As a framework for understanding this research, we propose four component tasks involved in learning from experience - aggregation, clustering, characterization, and storage. We then consider four common problems studied by machine learning researchers - learning from examples, heuristics learning, conceptual clustering, and learning macro-operators - describing each in terms of our framework. After this, we turn to the problem of grammar acquisition, relating this problem to other learning tasks and reviewing four AI systems that have addressed the problem. Finally, we note some limitations of the earlier work and propose an alternative approach to modeling the mechanisms underlying language acquisition
Recommended from our members
Machine learning : techniques and foundations
The field of machine learning studies computational methods for acquiring new knowledge, new skills, and new ways to organize existing knowledge. In this paper we present some of the basic techniques and principles that underlie AI research on learning, including methods for learning from examples, learning in problem solving, learning by analogy, grammar acquisition, and machine discovery. In each case, we illustrate the techniques with paradigmatic examples
Recommended from our members
Towards A Computational Model Of Kietaphor In Common Sense Reasoning
Smoothing Proximal Gradient Method for General Structured Sparse Learning
We study the problem of learning high dimensional regression models
regularized by a structured-sparsity-inducing penalty that encodes prior
structural information on either input or output sides. We consider two widely
adopted types of such penalties as our motivating examples: 1) overlapping
group lasso penalty, based on the l1/l2 mixed-norm penalty, and 2) graph-guided
fusion penalty. For both types of penalties, due to their non-separability,
developing an efficient optimization method has remained a challenging problem.
In this paper, we propose a general optimization approach, called smoothing
proximal gradient method, which can solve the structured sparse regression
problems with a smooth convex loss and a wide spectrum of
structured-sparsity-inducing penalties. Our approach is based on a general
smoothing technique of Nesterov. It achieves a convergence rate faster than the
standard first-order method, subgradient method, and is much more scalable than
the most widely used interior-point method. Numerical results are reported to
demonstrate the efficiency and scalability of the proposed method.Comment: arXiv admin note: substantial text overlap with arXiv:1005.471
Discrete channel apodization method for the analysis of high-energy x-ray data.
Thesis. 1975. B.S. cn--Massachusetts Institute of Technology. Dept. of Physics.MICROFICHE COPY AVAILABLE IN ARCHIVES.Includes bibliographical references.B.S.c
- …