265 research outputs found
Philosophy and updating of the asteroid photometric catalogue
The Asteroid Photometric Catalogue now contains photometric lightcurves for 584 asteroids. We discuss some of the guiding principles behind it. This concerns both observers who offer input to it and users of the product
The activity of Main Belt comets
Main Belt comets represent a recently discovered class of objects. They are
quite intriguing because, while having a Tisserand invariant value higher than
3, are showing cometary activity. We study the activity of the Main Belt comets
making the assumption that they are icy-bodies and that the activity has been
triggered by an impact. We determine the characteristics of this activity and
if the nowadays impact rate in the Main Asteroid Belt is compatible with the
hypothesis of an activity triggered by a recent impact. Due to the fact that
the Main Belt comets can be considered as a kind of comets, we apply a thermal
evolution model developed for icy bodies in order to simulate their activity.
We also apply a model to derive the impact rate, with respect to the size of
the impactor, in the Main Belt. We demonstrate that a stable activity can
result from a recent impact, able to expose ice-rich layers, and that the
impact rate in the Main Belt is compatible with this explanation.Comment: 9 pages, 7 figure
Planetary Science Virtual Observatory architecture
In the framework of the Europlanet-RI program, a prototype of Virtual
Observatory dedicated to Planetary Science was defined. Most of the activity
was dedicated to the elaboration of standards to retrieve and visualize data in
this field, and to provide light procedures to teams who wish to contribute
with on-line data services. The architecture of this VO system and selected
solutions are presented here, together with existing demonstrators
Water in Comet 2/2003 K4 (LINEAR) with Spitzer
We present sensitive 5.5 to 7.6 micron spectra of comet C/2003 K4 (LINEAR)
obtained on 16 July 2004 (r_{h} = 1.760 AU, Delta_{Spitzer} = 1.409 AU, phase
angle 35.4 degrees) with the Spitzer Space Telescope. The nu_{2} vibrational
band of water is detected with a high signal-to-noise ratio (> 50). Model
fitting to the best spectrum yields a water ortho-to-para ratio of 2.47 +/-
0.27, which corresponds to a spin temperature of 28.5^{+6.5}_{-3.5} K. Spectra
acquired at different offset positions show that the rotational temperature
decreases with increasing distance from the nucleus, which is consistent with
evolution from thermal to fluorescence equilibrium. The inferred water
production rate is (2.43 +/- 0.25) \times 10^{29} molec. s^{-1}. The spectra do
not show any evidence for emission from PAHs and carbonate minerals, in
contrast to results reported for comets 9P/Tempel 1 and C/1995 O1 (Hale-Bopp).
However, residual emission is observed near 7.3 micron the origin of which
remains unidentified.Comment: 33 pages, including 11 figures, 2 tables, ApJ 2007 accepte
Mesosiderites on Vesta: A Hyperspectral VIS-NIR Investigation
The discussion about the mesosiderite origin is an open issue since several years. Mesosiderites are mixtures of silicate mineral fragments or clasts, embedded in a FeNi metal matrix. Silicates are very similar in mineralogy and texture to howardites [1]. This led some scientists to conclude that mesosiderites could come from the same parent parent asteroid of the howardite, eucrite and diogenite (HED) meteorites [2, 3]. Other studies found a number of differences between HEDs and mesosiderite silicates that could be explained only by separate parent asteroids [4]. Recently, high precision oxygen isotope measurements of m esosiderites silicate fraction were found to be isotopically identical to the HEDs, requiring common parent body, i.e. 4 Vesta [5]. Another important element in favor of a common origin was given by the identification of a centimeter-sized mesosiderite clast in a howardite (Dar al Gani 779): a metal-rich inclusion with fragments of olivine, anorthite, and orthopyroxene plus minor amounts of chromite, tridymite, and troilite [6]. The Dawn mission with its instruments, the Infrared Mapping Spectrometer (VIR) [7], the Framing Camera [8] and the Gamma-Ray and Neutron Detector (GRaND) [9] confirmed that Vesta has a composition fully compatible with HED meteorites [10]. We investigate here the possibility to discern mesosiderite rich locations on the surface of Vesta by means of hyperspectral IR images
First mineralogical maps of 4 Vesta
Before Dawn arrived at 4 Vesta only very low spatial resolution (~50 km) albedo and color maps were available from HST data. Also ground-based color and spectroscopic data were utilized as a first attempt to map Vestaâs mineralogical diversity [1-4]. The VIR spectrometer [5] onboard Dawn has ac-quired hyperspectral data while the FC camera [6] ob-tained multi-color data of the Vestan surface at very high spatial resolutions, allowing us to map complex geologic, morphologic units and features. We here re-port about the results obtained from a preliminary global mineralogical map of Vesta, based on data from the Survey orbit. This map is part of an iterative map-ping effort; the map is refined with each improvement in resolution
Analysis of Temperature Maps of Selected Dawn Data Over the Surface of Vesta
The thermal behavior of areas of unusual albedo at the surface of Vesta can be related to physical properties that may provide some information about the origin of those materials. Dawn s Visible and Infrared Mapping Spectrometer (VIR) [1] hyperspectral cubes can be used to retrieve surface temperatures. Due to instrumental constraints, high accuracy is obtained only if temperatures are greater than 180 K. Bright and dark surface materials on Vesta are currently investigated by the Dawn team [e.g., 2 and 3 respectively]. Here we present temperature maps of several local-scale features that were observed by Dawn under different illumination conditions and different local solar times
Comparison of Observed Surface Temperatures of 4 Vesta to the KRC Thermal Model
In this work, we will compare ob-served temperatures of the surface of Vesta using data acquired by the Dawn [1] Visible and Infrared Map-ping Spectrometer (VIR-MS) [2] during the approach phase to model results from the KRC thermal model. High thermal inertia materials, such as bedrock, resist changes in temperature while temperatures of low thermal inertia material, such as dust, respond quickly to changes in solar insolation. The surface of Vesta is expected to have low to medium thermal inertia values, with the most commonly used value being extremely low at 15 TIU [4]. There are several parameters which affect observed temperatures in addition to thermal inertia: bond albedo, slope, and surface roughness. In addition to these parameters, real surfaces are rarely uniform monoliths that can be described by a single thermal inertia value. Real surfaces are often vertically layered or are mixtures of dust and rock. For Vesta's surface, with temperature extremes ranging from 50 K to 275 K and no atmosphere, even a uniform monolithic surface may have non-uniform thermal inertia due to temperature dependent thermal conductivity
Thermal Analysis of Unusual Local-scale Features on the Surface of Vesta
At 525 km in mean diameter, Vesta is the second-most massive object in the main asteroid belt of our Solar System. At all scales, pyroxene absorptions are the most prominent spectral features on Vesta and overall, Vesta mineralogy indicates a complex magmatic evolution that led to a differentiated crust and mantle [1]. The thermal behavior of areas of unusual albedo seen on the surface at the local scale can be related to physical properties that can provide information about the origin of those materials. Dawn's Visible and Infrared Mapping Spectrometer (VIR) [2] hyperspectral images are routinely used, by means of temperature-retrieval algorithms, to compute surface temperatures along with spectral emissivities. Here we present temperature maps of several local-scale features of Vesta that were observed by Dawn under different illumination conditions and different local solar times
- âŠ