73 research outputs found

    Inhibition by phenolic antioxidants of the degradation of aromatic amines and sulfadiazine by the carbonate radical (CO3•−)

    Get PDF
    The carbonate radical CO3•− and the excited triplet states of chromophoric dissolved organic matter play an important role in the photodegradation of some easily oxidized pollutants in surface waters, such as the aromatic amines. Anilines and sulfadiazine are known to undergo back-reduction processes when their degradation is mediated by the excited triplet states of photosensitizers (triplet sensitization). Back-reduction, which inhibits photodegradation, means that phenols or the antioxidant (mostly phenolic) moieties occurring in the natural dissolved organic matter of surface waters reduce, back to the parent compounds, the radical species derived from the mono-electronic oxidation of anilines and sulfadiazine. Here we show that a similar process takes place as well in the case of substrate oxidation by CO3•−. The carbonate radical was here produced upon oxidation of HCO3−/CO32− by either HO•, generated by nitrate photolysis, or SO4•−, obtained by photolysis of persulfate. Back-reduction was observed in both cases in the presence of phenols, but at different extents as far as the details of reaction kinetics are concerned, and the occurrence of additional reductants might affect the efficacy by which phenols carry out the reduction process. In particular, when the carbonate radicals were produced by NO3– photolysis in the presence of HCO3−/CO32−, the numerical values of [PhOH]1/2 (the phenol concentration that halves the photodegradation rate of the substrate) were 2.19 ± 0.23 µM for aniline, 1.15 ± 0.25 µM for 3-chloroaniline, 1.18 ± 0.26 µM for 4-chloroaniline, and 1.18 ± 0.22 µM for 3,4-dichloroaniline. In contrast, when CO3•− was produced by photolysis of persulfate in the presence of HCO3−/CO32−, the corresponding values were 0.28 ± 0.02 µM for aniline and 0.79 ± 0.10 µM for sulfadiazine. Back-reduction has the potential to significantly inhibit photodegradation by CO3•− and excited triplet states in natural waters, and to comparatively increase the importance of HO•-mediated degradation that is not affected by the same phenomenon.ISSN:0043-1354ISSN:1879-244

    Effect of Solution pH on the Dual Role of Dissolved Organic Matter in Sensitized Pollutant Photooxidation

    Get PDF
    [Image: see text] Dissolved organic matter (DOM) has a dual role in indirect phototransformations of aquatic contaminants by acting both as a photosensitizer and an inhibitor. Herein, the pH dependence of the inhibitory effect of DOM and the underlying mechanisms were studied in more than 400 kinetic irradiation experiments over the pH range of 6–11. Experiments employed various combinations of one of three DOM isolates, one of two model photosensitizers, the model antioxidant phenol, and one of nine target compounds (TCs), comprising several aromatic amines, in particular anilines and sulfonamides, and 4-cyanophenol. Using model photosensitizers without antioxidants, the phototransformation of most TCs increased with increasing pH, even for TCs for which pH did not affect speciation. This trend was attributed to pH-dependent formation yields of TC-derived radicals and their re-formation to the parent TC. Analogous trends were observed with DOM as a photosensitizer. Comparison of model and DOM photosensitizer data sets showed increasing inhibitory effects of DOM on TC phototransformation kinetics with increasing pH. In systems with anilines as a TC and phenol as a model antioxidant, pH trends of the inhibitory effect could be rationalized based on the reduction potential difference (ΔE(red)) of phenoxyl/phenol and anilinyl/aniline couples. Our results indicate that the light-induced transformation of aromatic amines in the aquatic environment is governed by the pH-dependent inhibitory effects of antioxidant phenolic moieties of DOM and pH-dependent processes related to the formation of amine oxidation intermediates

    Oxidative Transformations of Contaminants in Natural and in Technical Systems

    Get PDF
    In this paper, we present case studies of oxidative transformations of contaminants by oxidants which are relevant in natural and in technical systems. These oxidants are reactive oxygen species (ROS), manganese(III,IV), iron(III), and molecular dioxygen (O2). Regarding ROS, we discuss i) their concentrations and their efficiencies as oxidants in natural waters and in water treatment, ii) reactions occurring in bromide-containing waters in the presence of ROS, iii) role of iron in the formation of ROS, and iv) quantitative structure-activity relationships (QSAR) of reactions of ROS with contaminants. Concerning MnIII and MnIV as oxidants, we present experimental studies on the oxidation of anilines by δ-MnO2. With respect to oxidative transformation of the hydrophilic organic contaminants ethylenediaminetetraacetate (EDTA) and nitrilotriacetate (NTA), we show that these organic complexing agents are efficiently oxidized by FeIII and O2, respectively, if catalyzed by light (for the oxidation of EDTA by FeIII and by enzymes (for the oxidation of NTA by O2)

    Photosensitizing and inhibitory effects of ozonated dissolved organic matter on triplet-induced contaminant transformation

    Get PDF
    Dissolved organic matter (DOM) is both a promoter and an inhibitor of triplet-induced organic contaminant oxidation. This dual role was systematically investigated through photochemical experiments with three types of DOM of terrestrial and aquatic origins that were preoxidized to varying extents by ozonation. The inhibitory effect of DOM was assessed by determining the 4-carboxybenzophenone photosensitized transformation rate constants of two sulfonamide antibiotics (sulfamethoxazole and sulfadiazine) in the presence of untreated or preoxidized DOM. The inhibitory effect decreased with the increasing extent of DOM preoxidation, and it was correlated to the loss of phenolic antioxidant moieties, as quantified electrochemically, and to the loss of DOM ultraviolet absorbance. The triplet photosensitizing ability of preoxidized DOM was determined using the conversion of the probe compound 2,4,6-trimethylphenol (TMP), which is unaffected by DOM inhibition effects. The DOM photosensitized transformation rate constants of TMP decreased with increasing DOM preoxidation and were correlated to the concomitant loss of chromophores (i.e., photosensitizing moieties). The combined effects of DOM preoxidation on the inhibiting and photosensitizing properties were assessed by phototransformation experiments of the sulfonamides in DOM-containing solutions. At low extents of DOM preoxidation, the sulfonamide phototransformation rate constants remained either unchanged or slightly increased, indicating that the removal of antioxidant moieties had larger effects than the loss of photosensitizing moieties. At higher extents of DOM preoxidation, transformation rates declined, mainly reflecting the destruction of photosensitizing moieties

    The commissioning of the CUORE experiment: the mini-tower run

    Get PDF
    CUORE is a ton-scale experiment approaching the data taking phase in Gran Sasso National Laboratory. Its primary goal is to search for the neutrinoless double-beta decay in 130Te using 988 crystals of tellurim dioxide. The crystals are operated as bolometers at about 10 mK taking advantage of one of the largest dilution cryostat ever built. Concluded in March 2016, the cryostat commissioning consisted in a sequence of cool down runs each one integrating new parts of the apparatus. The last run was performed with the fully configured cryostat and the thermal load at 4 K reached the impressive mass of about 14 tons. During that run the base temperature of 6.3 mK was reached and maintained for more than 70 days. An array of 8 crystals, called mini-tower, was used to check bolometers operation, readout electronics and DAQ. Results will be presented in terms of cooling power, electronic noise, energy resolution and preliminary background measurements

    Sarilumab in patients admitted to hospital with severe or critical COVID-19: a randomised, double-blind, placebo-controlled, phase 3 trial

    Get PDF
    Background: Elevated proinflammatory cytokines are associated with greater COVID-19 severity. We aimed to assess safety and efficacy of sarilumab, an interleukin-6 receptor inhibitor, in patients with severe (requiring supplemental oxygen by nasal cannula or face mask) or critical (requiring greater supplemental oxygen, mechanical ventilation, or extracorporeal support) COVID-19. Methods: We did a 60-day, randomised, double-blind, placebo-controlled, multinational phase 3 trial at 45 hospitals in Argentina, Brazil, Canada, Chile, France, Germany, Israel, Italy, Japan, Russia, and Spain. We included adults (≥18 years) admitted to hospital with laboratory-confirmed SARS-CoV-2 infection and pneumonia, who required oxygen supplementation or intensive care. Patients were randomly assigned (2:2:1 with permuted blocks of five) to receive intravenous sarilumab 400 mg, sarilumab 200 mg, or placebo. Patients, care providers, outcome assessors, and investigators remained masked to assigned intervention throughout the course of the study. The primary endpoint was time to clinical improvement of two or more points (seven point scale ranging from 1 [death] to 7 [discharged from hospital]) in the modified intention-to-treat population. The key secondary endpoint was proportion of patients alive at day 29. Safety outcomes included adverse events and laboratory assessments. This study is registered with ClinicalTrials.gov, NCT04327388; EudraCT, 2020-001162-12; and WHO, U1111-1249-6021. Findings: Between March 28 and July 3, 2020, of 431 patients who were screened, 420 patients were randomly assigned and 416 received placebo (n=84 [20%]), sarilumab 200 mg (n=159 [38%]), or sarilumab 400 mg (n=173 [42%]). At day 29, no significant differences were seen in median time to an improvement of two or more points between placebo (12·0 days [95% CI 9·0 to 15·0]) and sarilumab 200 mg (10·0 days [9·0 to 12·0]; hazard ratio [HR] 1·03 [95% CI 0·75 to 1·40]; log-rank p=0·96) or sarilumab 400 mg (10·0 days [9·0 to 13·0]; HR 1·14 [95% CI 0·84 to 1·54]; log-rank p=0·34), or in proportions of patients alive (77 [92%] of 84 patients in the placebo group; 143 [90%] of 159 patients in the sarilumab 200 mg group; difference −1·7 [−9·3 to 5·8]; p=0·63 vs placebo; and 159 [92%] of 173 patients in the sarilumab 400 mg group; difference 0·2 [−6·9 to 7·4]; p=0·85 vs placebo). At day 29, there were numerical, non-significant survival differences between sarilumab 400 mg (88%) and placebo (79%; difference +8·9% [95% CI −7·7 to 25·5]; p=0·25) for patients who had critical disease. No unexpected safety signals were seen. The rates of treatment-emergent adverse events were 65% (55 of 84) in the placebo group, 65% (103 of 159) in the sarilumab 200 mg group, and 70% (121 of 173) in the sarilumab 400 mg group, and of those leading to death 11% (nine of 84) were in the placebo group, 11% (17 of 159) were in the sarilumab 200 mg group, and 10% (18 of 173) were in the sarilumab 400 mg group. Interpretation: This trial did not show efficacy of sarilumab in patients admitted to hospital with COVID-19 and receiving supplemental oxygen. Adequately powered trials of targeted immunomodulatory therapies assessing survival as a primary endpoint are suggested in patients with critical COVID-19. Funding: Sanofi and Regeneron Pharmaceuticals
    • …
    corecore