20 research outputs found

    Fatigue Fracture of Self-Recovery Hydrogels

    No full text
    Hydrogels of superior mechanical behavior are under intense development for many applications. Some of these hydrogels can recover their stress–stretch curves after many loading cycles. These hydrogels are called self-recovery hydrogels or even fatigue-free hydrogels. Such a hydrogel typically contains a covalent polymer network, together with some noncovalent, reversible interactions. Here we show that self-recovery hydrogels are still susceptible to fatigue fracture. We study a hydrogel containing both covalently cross-linked polyacrylamide and un-cross-linked poly­(vinyl alcohol). For a sample without precut crack, the stress–stretch curve recovers after thousands of loading cycles. For a sample with a precut crack, however, the crack extends cycle by cycle. The threshold for fatigue fracture depends on the covalent network but negligibly on noncovalent interactions. Above the threshold, the noncovalent interactions slow down the extension of the crack under cyclic loads

    Strong Interfaces Enable Efficient Load Transfer for Strong, Tough, and Impact-Resistant Hydrogel Composites

    No full text
    Many biological hydrogels are mechanically robust to bear quasi-static and impact loads. In contrast, the mechanical properties of synthetic hydrogels against impact loads remain substantially unexplored, albeit their mechanical robustness under quasi-static loads has been extensively developed. Here, we report on the design and synthesis of strong, tough, and impact-resistant hydrogel composites by reinforcing Ca-alginate/polyacrylamide hydrogels with glass fabrics and conferring strong interfaces between the hydrogel matrix and the fibers. The fabric enables high elastic modulus, the hydrogel matrix enables large dissipation, and the strong interfaces enable efficient load transfer for synergistic strengthening and toughening, which is manifested by digital image correlation analyses. Under quasi-static loads, the hydrogel composite exhibits an elastic modulus of 35 MPa and a toughness of 206.7 kJ/m2. Under impact loads, a piece of 7.7 g sample bears the impact of energy of 7.4 J and resists more than 100 cycles of consecutive impact of 600 mJ. As a proof-of-concept, a hydrogel composite as a safeguard to protect fragile glasses from impact is demonstrated. Because impact phenomena are universal, it is expected that the study on the impact of hydrogels will draw increasing attention

    Strong Interfaces Enable Efficient Load Transfer for Strong, Tough, and Impact-Resistant Hydrogel Composites

    No full text
    Many biological hydrogels are mechanically robust to bear quasi-static and impact loads. In contrast, the mechanical properties of synthetic hydrogels against impact loads remain substantially unexplored, albeit their mechanical robustness under quasi-static loads has been extensively developed. Here, we report on the design and synthesis of strong, tough, and impact-resistant hydrogel composites by reinforcing Ca-alginate/polyacrylamide hydrogels with glass fabrics and conferring strong interfaces between the hydrogel matrix and the fibers. The fabric enables high elastic modulus, the hydrogel matrix enables large dissipation, and the strong interfaces enable efficient load transfer for synergistic strengthening and toughening, which is manifested by digital image correlation analyses. Under quasi-static loads, the hydrogel composite exhibits an elastic modulus of 35 MPa and a toughness of 206.7 kJ/m2. Under impact loads, a piece of 7.7 g sample bears the impact of energy of 7.4 J and resists more than 100 cycles of consecutive impact of 600 mJ. As a proof-of-concept, a hydrogel composite as a safeguard to protect fragile glasses from impact is demonstrated. Because impact phenomena are universal, it is expected that the study on the impact of hydrogels will draw increasing attention

    Strong Interfaces Enable Efficient Load Transfer for Strong, Tough, and Impact-Resistant Hydrogel Composites

    No full text
    Many biological hydrogels are mechanically robust to bear quasi-static and impact loads. In contrast, the mechanical properties of synthetic hydrogels against impact loads remain substantially unexplored, albeit their mechanical robustness under quasi-static loads has been extensively developed. Here, we report on the design and synthesis of strong, tough, and impact-resistant hydrogel composites by reinforcing Ca-alginate/polyacrylamide hydrogels with glass fabrics and conferring strong interfaces between the hydrogel matrix and the fibers. The fabric enables high elastic modulus, the hydrogel matrix enables large dissipation, and the strong interfaces enable efficient load transfer for synergistic strengthening and toughening, which is manifested by digital image correlation analyses. Under quasi-static loads, the hydrogel composite exhibits an elastic modulus of 35 MPa and a toughness of 206.7 kJ/m2. Under impact loads, a piece of 7.7 g sample bears the impact of energy of 7.4 J and resists more than 100 cycles of consecutive impact of 600 mJ. As a proof-of-concept, a hydrogel composite as a safeguard to protect fragile glasses from impact is demonstrated. Because impact phenomena are universal, it is expected that the study on the impact of hydrogels will draw increasing attention

    Strong Interfaces Enable Efficient Load Transfer for Strong, Tough, and Impact-Resistant Hydrogel Composites

    No full text
    Many biological hydrogels are mechanically robust to bear quasi-static and impact loads. In contrast, the mechanical properties of synthetic hydrogels against impact loads remain substantially unexplored, albeit their mechanical robustness under quasi-static loads has been extensively developed. Here, we report on the design and synthesis of strong, tough, and impact-resistant hydrogel composites by reinforcing Ca-alginate/polyacrylamide hydrogels with glass fabrics and conferring strong interfaces between the hydrogel matrix and the fibers. The fabric enables high elastic modulus, the hydrogel matrix enables large dissipation, and the strong interfaces enable efficient load transfer for synergistic strengthening and toughening, which is manifested by digital image correlation analyses. Under quasi-static loads, the hydrogel composite exhibits an elastic modulus of 35 MPa and a toughness of 206.7 kJ/m2. Under impact loads, a piece of 7.7 g sample bears the impact of energy of 7.4 J and resists more than 100 cycles of consecutive impact of 600 mJ. As a proof-of-concept, a hydrogel composite as a safeguard to protect fragile glasses from impact is demonstrated. Because impact phenomena are universal, it is expected that the study on the impact of hydrogels will draw increasing attention

    Strong Interfaces Enable Efficient Load Transfer for Strong, Tough, and Impact-Resistant Hydrogel Composites

    No full text
    Many biological hydrogels are mechanically robust to bear quasi-static and impact loads. In contrast, the mechanical properties of synthetic hydrogels against impact loads remain substantially unexplored, albeit their mechanical robustness under quasi-static loads has been extensively developed. Here, we report on the design and synthesis of strong, tough, and impact-resistant hydrogel composites by reinforcing Ca-alginate/polyacrylamide hydrogels with glass fabrics and conferring strong interfaces between the hydrogel matrix and the fibers. The fabric enables high elastic modulus, the hydrogel matrix enables large dissipation, and the strong interfaces enable efficient load transfer for synergistic strengthening and toughening, which is manifested by digital image correlation analyses. Under quasi-static loads, the hydrogel composite exhibits an elastic modulus of 35 MPa and a toughness of 206.7 kJ/m2. Under impact loads, a piece of 7.7 g sample bears the impact of energy of 7.4 J and resists more than 100 cycles of consecutive impact of 600 mJ. As a proof-of-concept, a hydrogel composite as a safeguard to protect fragile glasses from impact is demonstrated. Because impact phenomena are universal, it is expected that the study on the impact of hydrogels will draw increasing attention

    Strong Interfaces Enable Efficient Load Transfer for Strong, Tough, and Impact-Resistant Hydrogel Composites

    No full text
    Many biological hydrogels are mechanically robust to bear quasi-static and impact loads. In contrast, the mechanical properties of synthetic hydrogels against impact loads remain substantially unexplored, albeit their mechanical robustness under quasi-static loads has been extensively developed. Here, we report on the design and synthesis of strong, tough, and impact-resistant hydrogel composites by reinforcing Ca-alginate/polyacrylamide hydrogels with glass fabrics and conferring strong interfaces between the hydrogel matrix and the fibers. The fabric enables high elastic modulus, the hydrogel matrix enables large dissipation, and the strong interfaces enable efficient load transfer for synergistic strengthening and toughening, which is manifested by digital image correlation analyses. Under quasi-static loads, the hydrogel composite exhibits an elastic modulus of 35 MPa and a toughness of 206.7 kJ/m2. Under impact loads, a piece of 7.7 g sample bears the impact of energy of 7.4 J and resists more than 100 cycles of consecutive impact of 600 mJ. As a proof-of-concept, a hydrogel composite as a safeguard to protect fragile glasses from impact is demonstrated. Because impact phenomena are universal, it is expected that the study on the impact of hydrogels will draw increasing attention

    Strong Interfaces Enable Efficient Load Transfer for Strong, Tough, and Impact-Resistant Hydrogel Composites

    No full text
    Many biological hydrogels are mechanically robust to bear quasi-static and impact loads. In contrast, the mechanical properties of synthetic hydrogels against impact loads remain substantially unexplored, albeit their mechanical robustness under quasi-static loads has been extensively developed. Here, we report on the design and synthesis of strong, tough, and impact-resistant hydrogel composites by reinforcing Ca-alginate/polyacrylamide hydrogels with glass fabrics and conferring strong interfaces between the hydrogel matrix and the fibers. The fabric enables high elastic modulus, the hydrogel matrix enables large dissipation, and the strong interfaces enable efficient load transfer for synergistic strengthening and toughening, which is manifested by digital image correlation analyses. Under quasi-static loads, the hydrogel composite exhibits an elastic modulus of 35 MPa and a toughness of 206.7 kJ/m2. Under impact loads, a piece of 7.7 g sample bears the impact of energy of 7.4 J and resists more than 100 cycles of consecutive impact of 600 mJ. As a proof-of-concept, a hydrogel composite as a safeguard to protect fragile glasses from impact is demonstrated. Because impact phenomena are universal, it is expected that the study on the impact of hydrogels will draw increasing attention

    Tough and Biocompatible Hydrogel Tissue Adhesives Entirely Based on Naturally Derived Ingredients

    No full text
    Hydrogel tissue adhesives have tremendous potential applications in biological engineering. Existing hydrogel tissue adhesives generally do not have adequate mechanical robustness and acceptable biocompatibility at the same time. Herein, we report a one-step method to synthesize tough and biocompatible hydrogel tissue adhesives entirely made of naturally derived ingredients. We select two natural polymers, chitosan and gelatin, to construct the backbone and a bioderived compound, genipin, as the cross-linker. We show that, upon gelation, genipins cross-link chitosan and gelatin to form two interpenetrated networks and interlink them to tissue surfaces. Meanwhile, hydrogen bonds form in the matrix to strengthen the networks and at the interface to strengthen the adhesion between the hydrogel and tissue. Furthermore, we elaborately use high initial polymer contents to induce topological entanglements in the polymer networks to toughen the hydrogel. The resulting chitosan–gelatin hydrogel provides a tough matrix, and the robust covalent interlinks and hydrogen bonds provide a strong interface, achieving a tensile strength of ∼190 kPa, a fracture toughness of 205.7 J/m2, a mode I adhesion energy of 197.6 J/m2, and a mode II adhesion energy of 51.2 J/m2. We demonstrate that the hydrogel tissue adhesive is injectable, degradable, and noncytotoxic and can be used for the controlled release of the anticancer drug cisplatin. All-natural ingredient-based tough and biocompatible hydrogels are promising as tissue adhesives for biomedical and related applications

    Strong Interfaces Enable Efficient Load Transfer for Strong, Tough, and Impact-Resistant Hydrogel Composites

    No full text
    Many biological hydrogels are mechanically robust to bear quasi-static and impact loads. In contrast, the mechanical properties of synthetic hydrogels against impact loads remain substantially unexplored, albeit their mechanical robustness under quasi-static loads has been extensively developed. Here, we report on the design and synthesis of strong, tough, and impact-resistant hydrogel composites by reinforcing Ca-alginate/polyacrylamide hydrogels with glass fabrics and conferring strong interfaces between the hydrogel matrix and the fibers. The fabric enables high elastic modulus, the hydrogel matrix enables large dissipation, and the strong interfaces enable efficient load transfer for synergistic strengthening and toughening, which is manifested by digital image correlation analyses. Under quasi-static loads, the hydrogel composite exhibits an elastic modulus of 35 MPa and a toughness of 206.7 kJ/m2. Under impact loads, a piece of 7.7 g sample bears the impact of energy of 7.4 J and resists more than 100 cycles of consecutive impact of 600 mJ. As a proof-of-concept, a hydrogel composite as a safeguard to protect fragile glasses from impact is demonstrated. Because impact phenomena are universal, it is expected that the study on the impact of hydrogels will draw increasing attention
    corecore