772 research outputs found

    Stimuli-responsive photoluminescent and structural properties of MIL-53(Al) MOF for sensing applications

    Get PDF
    Metal-organic frameworks (MOFs) are an intriguing group of porous materials due to their potential influence on the development of indispensable technologies like luminescent sensors and solid-state light devices, luminescent multifunctional nanomaterials. In this research work we explored MIL-53(Al), an exceptional class of MOF that, along with guest adsorption, undergoes structural transitions exhibiting breathing behavior between narrow pore and large pore under temperature and mechanical stress. Therefore, we opted for the time resolved luminescence and FT-Raman spectroscopy to investigate the mechanochromic and thermochromic response of this material under external stimuli. Intriguingly, when subjected to temperature changes, MIL-53(Al) exhibited a ratiometric fluorescence behavior related to the reversible relationship of photoluminescence emission intensity with respect to temperature. Moreover, under higher mechanical stress MIL-53(Al) displayed turn-on behavior in emission intensity, hence offering a thrilling avenue for the application in mechanically deformed-based luminescent sensors and ratiometric fluorescence temperature sensors

    Present Status and Future Programs of the n_TOF Experiment

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe neutron time-of-flight facility n_TOF at CERN, Switzerland, operational since 2001, delivers neutrons using the Proton Synchrotron (PS) 20 GeV/c proton beam impinging on a lead spallation target. The facility combines a very high instantaneous neutron flux, an excellent time of flight resolution due to the distance between the experimental area and the production target (185 meters), a low intrinsic background and a wide range of neutron energies, from thermal to GeV neutrons. These characteristics provide a unique possibility to perform neutron-induced capture and fission cross-section measurements for applications in nuclear astrophysics and in nuclear reactor technology.The most relevant measurements performed up to now and foreseen for the future will be presented in this contribution. The overall efficiency of the experimental program and the range of possible measurements achievable with the construction of a second experimental area (EAR-2), vertically located 20 m on top of the n_TOF spallation target, might offer a substantial improvement in measurement sensitivities. A feasibility study of the possible realisation of the installation extension will be also presented

    Exploring Fe3+ cation exchange dynamics in fluorescent MIL-53(Al) MOF: Solid-state photoluminescence and structural insights

    Get PDF
    Flexible luminescent MOFs have gained significant interest since they combine the advantages of ratiometric fluorescence with the ability to modify the structure to accommodate a large variety of guest molecules. This study has investigated the influence of different concentrations of Fe3+ cations on the MIL-53(Al) MOF by employing a comprehensive array of characterization techniques on the solid-state samples, aiming to relate the optical response with the structural modifications. Structural and thermogravimetric findings evidenced modifications in peak positions, intensities, and an improved thermal stability of Fe3+-exchanged MIL-53(Al) samples compared to the pristine MOF, thus indicating structural changes induced by the incorporation of Fe3+ cations. Moreover, as the Fe3+ concentration increases, a quenching of the UV and blue photoluminescence bands is observed. Hence, shedding light on the complex interplay between Fe3+ cation exchange, the photoluminescence and structural properties of solid-state MIL-53(Al) MOF, can provide valuable insights for the rational design and engineering of MOF-based materials for various applications, including sensing, catalysis, and optoelectronics

    Tailoring the Transport Properties of Mesoporous Doped Cerium Oxide for Energy Applications

    Get PDF
    Hard-template nanocasted mesoporous cerium oxide possesses a unique combination of thermal stability, high surface area, and short diffusion lengths for mass and gas transport, which makes it relevant for high-temperature catalysis, sensing, and electrochemical applications. Here, we present an in-depth study of a number of mesoporous doped ceria systems, and we assess their fundamental structure and functionalities by complementary transmission electron microscopy imaging and spectroscopy, electron tomography reconstructions, and electrochemical impedance spectroscopy. We employed surface chemical modifications for increasing the ionic conductivity of as-synthesized mesoporous Gd-doped ceria by 2 orders of magnitude, enabling the ionic pathway across mesoporous particles. Complementary bulk doping strategies (by the addition of Pr) result in the easy tuning of the electrical transport mechanisms converting pure ionic mesoporous ceria into a mixed ionic-electronic conductor. The results obtained here are rationalized in light of local charge accumulation and mobility effects, providing a potential tool for engineering transport properties in nanocasted ceria and similar nanostructured materials for use in energy applications in the form of functional composites, infiltrated structures, or catalytic layers

    Measurement of the (90,91,92,93,94,96)Zr(n,gamma) and (139)La(n,gamma) cross sections at n_TOF

    Get PDF
    Open AccessNeutron capture cross sections of Zr and La isotopes have important implications in the field of nuclear astrophysics as well as in the nuclear technology. In particular the Zr isotopes play a key role for the determination of the neutron density in the He burning zone of the Red Giant star, while the (139)La is important to monitor the s-process abundances from Ba up to Ph. Zr is also largely used as structural materials of traditional and advanced nuclear reactors. The nuclear resonance parameters and the cross section of (90,91,92,93,94,96)Zr and (139)La have been measured at the n_TOF facility at CERN. Based on these data the capture resonance strength and the Maxwellian-averaged cross section were calculated

    Tailoring structural and luminescent properties of solid-state MIL-53(Al) MOF via Fe3+ cation exchange

    Get PDF
    Metal-Organic Frameworks (MOFs) have emerged as promising candidates for detecting metal ions owing to their large surface area, customizable porosity, and diverse functionalities. In recent years, there has been a surge in research focused on MOFs with luminescent properties. These frameworks are constructed through coordinated bonding between metal ions and multi-dentate ligands, resulting in inherent fluorescent structures. Their luminescent behavior is influenced by factors like structural composition, surface morphology, pore volume, and interactions with target analytes, particularly metal ions. This study investigates the impact of Fe3+ cation exchange on the structural, thermal, and photoluminescent (PL) properties of MIL-53(Al) MOF samples. Incorporating Fe3+ ions induces structural distortions, altering coordination environments and leading to amorphization. Enhanced metal-ligand bonds boost thermal stability, delaying decomposition processes. Raman peak changes reflect ionic and charge disparities, disorder from cation exchange, and electronic effects. PL emission spectra variations reveal MOF framework influence on emission characteristics, with Fe3+ exchange quenching PL intensity and shortening lifetimes due to structural distortions and stronger linker binding, favoring non-radiative decay. These findings underscore the complexity of MOF interactions, crucial for applications like catalysis, gas storage, and luminescent devices. Cation exchange emerges as a promising strategy for tailoring MOF properties to specific needs

    Towards the high-accuracy determination of the 238U fission cross section at the threshold region at CERN - N-TOF

    Get PDF
    The 238U fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The 238U fission cross section has been measured relative to the 235U fission cross section at CERN - n-TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards

    From micro to macro: Physical-chemical characterization of wheat starch-based films modified with PEG200, sodium citrate, or citric acid

    Get PDF
    Needing to extend the shelf-life of packaged food and the evolving consumer demands led researchers to seek innovative, eco-friendly, and biocompatible packaging solutions. Starch is among the most promising natural and renewable alternatives to non-degradable plastics. Here, we deeply study the structural features of starch films modified by adding citric acid (CA) or sodium citrate (SC) as a cross-linker and polyethylene glycol 200 (PEG200) as a plasticizer and obtained through solvent casting. The substances' influence on starch films was evaluated through Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) and Solid-state Nuclear Magnetic Resonance (ss-NMR) spectroscopies. Films' macroscopic properties, such as swelling index, solubility, thermo-mechanical features, and moisture absorption, were also assessed to foresee potential applications. Proper amounts of CA, CS, and PEG200 improve film properties and inhibit starch chains' retrogradation and recrystallization. Besides, the chemical neighbourhood of nuclei observed through ss-NMR significantly changed alongside the polymer chains' mobility. The latter result indicates a different polymer chain structural organization that could justify the film's higher resistance to thermal degradation and elongation at the break. This methodological approach is effective in predicting the macroscopic behaviour of a polymeric material and could be helpful for the application of such products in food preservation

    Textural, Microstructural and Chemical Characterization of Ferritic Stainless Steel Affected by the Gold Dust Defect

    Get PDF
    The “gold dust defect” (GDD) appears at the surface of ferritic stainless steels (FSS) and degrades their appearance. Previous research showed that this defect might be related to intergranular corrosion and that the addition of aluminium improves surface quality. However, the nature and origin of this defect are not properly understood yet. In this study, we performed detailed electron backscatter diffraction analyses and advanced monochromated electron energy-loss spectroscopy experiments combined with machine-learning analyses in order to extract a wealth of information on the GDD. Our results show that the GDD leads to strong textural, chemical, and microstructural heterogeneities. In particular, the surface of affected samples presents an -fibre texture which is characteristic of poorly recrystallised FSS. It is associated with a specific microstructure in which elongated grains are separated from the matrix by cracks. The edges of the cracks are rich in chromium oxides and MnCr2O4 spinel. In addition, the surface of the affected samples presents a heterogeneous passive layer, in contrast with the surface of unaffected samples, which shows a thicker and continuous passive layer. The quality of the passive layer is improved with the addition of aluminium, explaining the better resistance to the GDD

    Origin of the solid-state luminescence of MIL-53(Al) and its connection to the local crystalline structure

    Get PDF
    Metal-organic frameworks (MOFs) are extensively studied due to their unique surface properties, enabling many intriguing applications. Breathing MOFs, a subclass of MOFs, have gained recent interest for their ability to undergo structural changes based on factors like temperature, pressure, adsorbed molecules. Certain MOFs also exhibit remarkable optical properties useful for applications such as sensors, light-emitting diodes, and scintillators. The most promising MOFs possess high porosity, breathing properties, and photoluminescence activities, allowing for improved device responsiveness and selectivity. Understanding the relationship between crystal structures and photoluminescence properties is crucial in these cases. As studies on this topic are still very limited, we report for the first time an exhaustive study on the solid-state luminescence of the breathing MOF MIL-53(Al), that can stabilize in three different crystalline structures: open-pore, hydrated narrow-pore and closed-pore. We unveil a fascinating solid-state luminescence spectrum, comprising three partially overlapping bands, and elucidate the intricate electronic transitions within each band as well as their intimate correlation with the local crystalline structures. Our characterizations of spectroscopic properties and decay times provide a deeper understanding of the luminescent behaviour of MIL-53(Al) and demonstrate that is possible to identify present crystalline structures by optical measurements or to modify the optical properties inducing structural transitions for this type of materials. These insights could help to design next-generation, selective sensors or smart light emitting devices
    • …
    corecore