156 research outputs found
One-shot ultraspectral imaging with reconfigurable metasurfaces
One-shot spectral imaging that can obtain spectral information from thousands
of different points in space at one time has always been difficult to achieve.
Its realization makes it possible to get spatial real-time dynamic spectral
information, which is extremely important for both fundamental scientific
research and various practical applications. In this study, a one-shot
ultraspectral imaging device fitting thousands of micro-spectrometers (6336
pixels) on a chip no larger than 0.5 cm, is proposed and demonstrated.
Exotic light modulation is achieved by using a unique reconfigurable
metasurface supercell with 158400 metasurface units, which enables 6336
micro-spectrometers with dynamic image-adaptive performances to simultaneously
guarantee the density of spectral pixels and the quality of spectral
reconstruction. Additionally, by constructing a new algorithm based on
compressive sensing, the snapshot device can reconstruct ultraspectral imaging
information (/~0.001) covering a broad (300-nm-wide)
visible spectrum with an ultra-high center-wavelength accuracy of 0.04-nm
standard deviation and spectral resolution of 0.8 nm. This scheme of
reconfigurable metasurfaces makes the device can be directly extended to almost
any commercial camera with different spectral bands to seamlessly switch the
information between image and spectral image, and will open up a new space for
the application of spectral analysis combining with image recognition and
intellisense
Identification of amino-acid residues in the V protein of peste des petits ruminants essential for interference and suppression of STAT-mediated interferon signaling
AbstractPeste des petits ruminants virus (PPRV) causes a fatal disease in small ruminants. V protein of PPRV plays a pivotal role in interfering with host innate immunity by blocking IFNs signaling through interacting with STAT1 and STAT2. In the present study, the results demonstrated that PPRV V protein blocks IFN actions in a dose dependent manner and restrains the translocation of STAT1/2 proteins. We speculate that the translocation inhibition might be caused by the interfering of the downstream of STAT protein. Mutagenesis defines that Cys cluster and Trp motif of PPRV V protein are essential for STAT-mediated IFN signaling. These findings give a new sight for the further studies to understand the delicate mechanism of PPRV to escape the IFN signaling
Use of facile mechanochemical method to functionalize carbon nanofibers with nanostructured polyaniline and their electrochemical capacitance
A facile approach to functionalize carbon nanofibers [CNFs] with nanostructured polyaniline was developed via in situ mechanochemical polymerization of polyaniline in the presence of chemically treated CNFs. The nanostructured polyaniline grafting on the CNF was mainly in a form of branched nanofibers as well as rough nanolayers. The good dispersibility and processability of the hybrid nanocomposite could be attributed to its overall nanostructure which enhanced its accessibility to the electrolyte. The mechanochemical oxidation polymerization was believed to be related to the strong Lewis acid characteristic of FeCl3 and the Lewis base characteristic of aniline. The growth mechanism of the hierarchical structured nanofibers was also discussed. After functionalization with the nanostructured polyaniline, the hybrid polyaniline/CNF composite showed an enhanced specific capacitance, which might be related to its hierarchical nanostructure and the interaction between the aromatic polyaniline molecules and the CNFs
Effect of 5/6 Nephrectomized Rat Serum on Epithelial-to-Mesenchymal Transition In Vitro
Objective: To investigate whether the 5/6 nephrectomized (5/6Nx) ratsā 12-week serum could lead to tubular epithelial-to-mesenchymal transition (EMT) and its molecular mechanism, so as to probe the potential stimulation from circulation in chronic progressive kidney disease. Methods: A total of 24 Sprague Dawley (SD) rats were randomly divided into two groups: sham operation group (sham group) and 5/6Nx group. Rats were killed 12 weeks after surgery to obtain 5/6Nx ratsā 12-week serum. Then we detected the expression of E-cadherin in renal tubular epithelial cells of the remaining kidney and we investigated whether the 12th week serum of 5/6Nx rats could cause HK-2 (human kidney proximal tubular cell line) cells to transdifferentiate into fibroblasts. Results: Our data confirmed that E-cadherin expression decreased significantly in the remaining kidney at 12 weeks, and the 5/6Nx ratsā 12-week serum could suppress E-cadherin protein and mRNA expression (p < 0.05). We also found that the 5/6Nx ratsā 12-week serum could upreg-ulate ZEB1, β-catenin, and wnt3 protein expression (p < 0.05). Conclusions: Our results demonstrated that the 5/6Nx ratsā 12-week serum could suppress the expression of E-cadherin in HK-2 cells. It was partially through modulating the increase of ZEB1. The loss of E-cadherin could lead β-catenin to localize to the cytoplasm and nucleus, and feed into the Wnt signaling pathway. It means that the pathogenic serum in chronic kidney disease (CKD) plays an important role in the loss of renal function and turns to be a new avenue of research with potential clinical implications
Ozone Pollution in Chinese Cities: Spatiotemporal Variations and Their Relationships with Meteorological and Other Pollution Factors (2016ā2020)
With the acceleration of urbanization, ozone (O3) pollution has become increasingly serious in many Chinese cities. This study analyzes the temporal and spatial characteristics of O3 based on monitoring and meteorological data for 366 cities and national weather stations throughout China from 2016 to 2020. Least squares linear regression and Spearmanās correlation coefficient were computed to investigate the relationships of O3 with various pollution factors and meteorological conditions. Global Moranās I and the GetisāOrd index Gi* were adopted to reveal the spatial agglomeration of O3 pollution in Chinese cities and characterize the temporal and spatial characteristics of hot and cold spots. The results show that the national proportion of cities with an annual concentration exceeding 160 μgĀ·mā3 increased from 21.6% in 2016 to 50.9% in 2018 but dropped to 21.5% in 2020; these cities are concentrated mainly in Central China (CC) and East China (EC). Throughout most of China, the highest seasonal O3 concentrations occur in summer, while the highest values in South China (SC) and Southwest China (SWC) occur in autumn and spring, respectively. The highest monthly O3 concentration reached 200 μgĀ·mā3 in North China (NC) in June, while the lowest value was 60 μgĀ·mā3 in Northeast China (NEC) in December. O3 is positively correlated with the ground surface temperature (GST) and sunshine duration (SSD) and negatively correlated with pressure (PRS) and relative humidity (RHU). Wind speed (WIN) and precipitation (PRE) were positively correlated in all regions except SC. O3 concentrations are significantly differentiated in space: O3 pollution is high in CC and EC and relatively low in the western and northeastern regions. The concentration of O3 exhibits obvious agglomeration characteristics, with hot spots being concentrated mainly in NC, CC and EC.</jats:p
Potential mechanisms of sleeve gastrectomy for reducing weight and improving metabolism in patients with obesity
Ozone Pollution in Chinese Cities: Spatiotemporal Variations and Their Relationships with Meteorological and Other Pollution Factors (2016ā2020)
With the acceleration of urbanization, ozone (O3) pollution has become increasingly serious in many Chinese cities. This study analyzes the temporal and spatial characteristics of O3 based on monitoring and meteorological data for 366 cities and national weather stations throughout China from 2016 to 2020. Least squares linear regression and Spearmanās correlation coefficient were computed to investigate the relationships of O3 with various pollution factors and meteorological conditions. Global Moranās I and the GetisāOrd index Gi* were adopted to reveal the spatial agglomeration of O3 pollution in Chinese cities and characterize the temporal and spatial characteristics of hot and cold spots. The results show that the national proportion of cities with an annual concentration exceeding 160 μgĀ·mā3 increased from 21.6% in 2016 to 50.9% in 2018 but dropped to 21.5% in 2020; these cities are concentrated mainly in Central China (CC) and East China (EC). Throughout most of China, the highest seasonal O3 concentrations occur in summer, while the highest values in South China (SC) and Southwest China (SWC) occur in autumn and spring, respectively. The highest monthly O3 concentration reached 200 μgĀ·mā3 in North China (NC) in June, while the lowest value was 60 μgĀ·mā3 in Northeast China (NEC) in December. O3 is positively correlated with the ground surface temperature (GST) and sunshine duration (SSD) and negatively correlated with pressure (PRS) and relative humidity (RHU). Wind speed (WIN) and precipitation (PRE) were positively correlated in all regions except SC. O3 concentrations are significantly differentiated in space: O3 pollution is high in CC and EC and relatively low in the western and northeastern regions. The concentration of O3 exhibits obvious agglomeration characteristics, with hot spots being concentrated mainly in NC, CC and EC
Optimization of Cascade Small Hydropower Station Operation in the Jianhe River Basin Using a One-Dimensional Hydrodynamic Model
Hydropower development brings benefits in terms of power generation and flood control, but it also has inevitable ecological impacts. These impacts must be considered and addressed in order to ensure sustainable development and minimize harm to the environment. This study utilized the MIKE 11 HD modeling system to construct a hydrological and hydrodynamic model of the Jianhe River basin. The model incorporates the flow demand of ecologically sensitive targets for scheduling purposes and was calibrated and validated using hydrological data from 2014 to 2022. The hydrodynamic model was then applied to analyze the evolution characteristics of the water level in the main stream of the Jianhe River, identify key areas and periods for hydropower station operation, and calculate the minimum ecological water requirement using verification and estimation methods. Based on these findings, an ecological dispatching scheme for the cascade hydropower stations in the Jianhe River basin was developed. The results demonstrate satisfactory performance of the constructed NAM model for rainfall runoff and the 1D hydrodynamic MIKE 11 HD model for the Jianhe River basin. The deterministic coefficients exceed 0.8, and the relative errors in the total water volume are below 5.5%. The critical time and space interval for hydropower station operation in the main stream of the Jianhe River is identified as December to February of the following year, with the highest risk of flow interruption occurring in January, primarily concentrated between the Duoluo II and Huahai hydropower stations. If the appropriate dispatching scheme is not implemented in the areas prone to flow interruption during critical periods, it will have a negative impact on the ecological environment. These findings provide a scientific basis and decision support for developing multi-objective ecological flow guarantee schemes for rivers
Resistance characteristics analysis of droplet logic gate based on lattice Boltzmann method
Amino-Functionalized Titanium Based Metal-Organic Framework for Photocatalytic Hydrogen Production
Photocatalytic hydrogen production using stable metal-organic frameworks (MOFs), especially the titanium-based MOFs (Ti-MOFs) as photocatalysts is one of the most promising solutions to solve the energy crisis. However, due to the high reactivity and harsh synthetic conditions, only a limited number of Ti-MOFs have been reported so far. Herein, we synthesized a new amino-functionalized Ti-MOFs, named NH2-ZSTU-2 (ZSTU stands for Zhejiang Sci-Tech University), for photocatalytic hydrogen production under visible light irradiation. The NH2-ZSTU-2 was synthesized by a facile solvothermal method, composed of 2,4,6-tri(4-carboxyphenylphenyl)-aniline (NH2-BTB) triangular linker and infinite Ti-oxo chains. The structure and photoelectrochemical properties of NH2-ZSTU-2 were fully studied by powder X-ray diffraction, scanning electron microscope, nitro sorption isotherms, solid-state diffuse reflectance absorption spectra, and Mott–Schottky measurements, etc., which conclude that NH2-ZSTU-2 was favorable for photocatalytic hydrogen production. Benefitting from those structural features, NH2-ZSTU-2 showed steady hydrogen production rate under visible light irradiation with average photocatalytic H2 yields of 431.45 μmol·g−1·h−1 with triethanolamine and Pt as sacrificial agent and cocatalyst, respectively, which is almost 2.5 times higher than that of its counterpart ZSTU-2. The stability and proposed photocatalysis mechanism were also discussed. This work paves the way to design Ti-MOFs for photocatalysis
- ā¦