6 research outputs found

    Recoverable facial identity protection via adaptive makeup transfer adversarial attacks

    No full text
    Unauthorised face recognition (FR) systems have posed significant threats to digital identity and privacy protection. To alleviate the risk of compromised identities, recent makeup transfer-based attack methods embed adversarial signals in order to confuse unauthorised FR systems. However, their major weakness is that they set up a fixed image unrelated to both the protected and the makeup reference images as the confusion identity, which in turn has a negative impact on both attack success rate and visual quality of transferred photos. In addition, the generated images cannot be recognised by authorised FR systems once attacks are triggered. To ad- dress these challenges, in this paper, we propose a Recoverable Makeup Transferred Generative Adversarial Network (RMT-GAN) which has the distinctive feature of improving its image-transfer quality by selecting a suitable transfer reference photo as the target identity. Moreover, our method offers a solution to recover the protected photos to their original counterparts that can be recognised by authorised systems. Experimental results demonstrate that our method provides significantly improved attack success rates while maintaining higher visual quality compared to state-of-the-art makeup transfer-based adversarial attack methods.</p

    Development and evaluation of two approaches of visual sensitivity analysis to support epidemiological modeling

    No full text
    Computational modeling is a commonly used technology in many scientific disciplines and has played a noticeable role in combating the COVID-19 pandemic. Modeling scientists conduct sensitivity analysis frequently to observe and monitor the behavior of a model during its development and deployment. The traditional algorithmic ranking of sensitivity of different parameters usually does not provide modeling scientists with sufficient information to understand the interactions between different parameters and model outputs, while modeling scientists need to observe a large number of model runs in order to gain actionable information for parameter optimization. To address the above challenge, we developed and compared two visual analytics approaches, namely: algorithm-centric and visualization-assisted , and visualization-centric and algorithm-assisted . We evaluated the two approaches based on a structured analysis of different tasks in visual sensitivity analysis as well as the feedback of domain experts. While the work was carried out in the context of epidemiological modeling, the two approaches developed in this work are directly applicable to a variety of modeling processes featuring time series outputs, and can be extended to work with models with other types of outputs.</p

    Visual analytics based search-analyze-forecast framework for epidemiological time-series data

    No full text
    The COVID-19 pandemic has been a period where time-series of disease statistics, such as the number of cases or vaccinations, have been intensively used by public health professionals to estimate how their region compares to others and estimate what future could look like at home. Conventional visualizations are often limited in terms of advanced comparative features and in supporting forecasting systematically. This paper presents a visual analytics approach to support data-driven prediction based on a search-analyze-predict process comprising a multi-metric, multi-criteria time-series search method and a data-driven prediction technique. These are supported by a visualization framework for the comprehensive comparison of multiple time-series. We inform the design of our approach by getting iterative feedback from public health experts globally, and evaluate it both quantitatively and qualitatively.</p

    Complex model calibration through emulation, a worked example for a stochastic epidemic model

    No full text
    Uncertainty quantification is a formal paradigm of statistical estimation that aims to account for all uncertainties inherent in the modelling process of real-world complex systems. The methods are directly applicable to stochastic models in epidemiology, however they have thus far not been widely used in this context. In this paper, we provide a tutorial on uncertainty quantification of stochastic epidemic models, aiming to facilitate the use of the uncertainty quantification paradigm for practitioners with other complex stochastic simulators of applied systems. We provide a formal workflow including the important decisions and considerations that need to be taken, and illustrate the methods over a simple stochastic epidemic model of UK SARS-CoV-2 transmission and patient outcome. We also present new approaches to visualisation of outputs from sensitivity analyses and uncertainty quantification more generally in high input and/or output dimensions.</p

    RAMPVIS: Answering the challenges of building visualisation capabilities for large-scale emergency responses

    No full text
    The effort for combating the COVID-19 pandemic around the world has resulted in a huge amount of data, e.g., from testing, contact tracing, modelling, treatment, vaccine trials, and more. In addition to numerous challenges in epidemiology, healthcare, biosciences, and social sciences, there has been an urgent need to develop and provide visualisation and visual analytics (VIS) capacities to support emergency responses under difficult operational conditions. In this paper, we report the experience of a group of VIS volunteers who have been working in a large research and development consortium and providing VIS support to various observational, analytical, model-developmental, and disseminative tasks. In particular, we describe our approaches to the challenges that we have encountered in requirements analysis, data acquisition, visual design, software design, system development, team organisation, and resource planning. By reflecting on our experience, we propose a set of recommendations as the first step towards a methodology for developing and providing rapid VIS capacities to support emergency responses.</p

    Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations

    No full text
    We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs—a series of ideas, approaches and methods taken from existing visualization research and practice—deployed and developed to support modelling of the COVID-19 pandemic. Structured independent commentary on these efforts is synthesized through iterative reflection to develop: evidence of the effectiveness and value of visualization in this context; open problems upon which the research communities may focus; guidance for future activity of this type and recommendations to safeguard the achievements and promote, advance, secure and prepare for future collaborations of this kind. In describing and comparing a series of related projects that were undertaken in unprecedented conditions, our hope is that this unique report, and its rich interactive supplementary materials, will guide the scientific community in embracing visualization in its observation, analysis and modelling of data as well as in disseminating findings. Equally we hope to encourage the visualization community to engage with impactful science in addressing its emerging data challenges. If we are successful, this showcase of activity may stimulate mutually beneficial engagement between communities with complementary expertise to address problems of significance in epidemiology and beyond. See https://ramp-vis.github.io/RAMPVIS-PhilTransA-Supplement/. This article is part of the theme issue ‘Technical challenges of modelling real-life epidemics and examples of overcoming these’.</p
    corecore