64,486 research outputs found
Transport reversal in a delayed feedback ratchet
Feedback flashing ratchets are thermal rectifiers that use information on the
state of the system to operate the switching on and off of a periodic
potential. They can induce directed transport even with symmetric potentials
thanks to the asymmetry of the feedback protocol. We investigate here the
dynamics of a feedback flashing ratchet when the asymmetry of the ratchet
potential and of the feedback protocol favor transport in opposite directions.
The introduction of a time delay in the control strategy allows one to
nontrivially tune the relative relevance of the competing asymmetries leading
to an interesting dynamics. We show that the competition between the
asymmetries leads to a current reversal for large delays. For small ensembles
of particles current reversal appears as the consequence of the emergence of an
open-loop like dynamical regime, while for large ensembles of particles it can
be understood as a consequence of the stabilization of quasiperiodic solutions.
We also comment on the experimental feasibility of these feedback ratchets and
their potential applications.Comment: LaTeX, 7 pages, 6 figure
How occasional backstepping can speed up a processive motor protein
Fueled by the hydrolysis of ATP, the motor protein kinesin literally walks on
two legs along the biopolymer microtubule. The number of accidental backsteps
that kinesin takes appears to be much larger than what one would expect given
the amount of free energy that ATP hydrolysis makes available. This is puzzling
as more than a billion years of natural selection should have optimized the
motor protein for its speed and efficiency. But more backstepping allows for
the production of more entropy. Such entropy production will make free energy
available. With this additional free energy, the catalytic cycle of the kinesin
can be speeded up. We show how measured backstep percentages represent an
optimum at which maximal net forward speed is achieved.Comment: LaTeX, 5 pages, 3 figure
Baryonic Signatures in Large-Scale Structure
We investigate the consequences of a non-negligible baryon fraction for
models of structure formation in Cold Dark Matter dominated cosmologies,
emphasizing in particular the existence of oscillations in the present-day
matter power spectrum. These oscillations are the remnants of acoustic
oscillations in the photon-baryon fluid before last scattering. For acceptable
values of the cosmological and baryon densities, the oscillations modulate the
power by up to 10%, with a `period' in spatial wavenumber which is close to
Delta k approximately 0.05/ Mpc. We study the effects of nonlinear evolution on
these features, and show that they are erased for k > 0.2 h/ Mpc. At larger
scales, the features evolve as expected from second-order perturbation theory:
the visibility of the oscillations is affected only weakly by nonlinear
evolution. No realistic CDM parameter combination is able to account for the
claimed feature near k = 0.1 h/ Mpc in the APM power spectrum, or the excess
power at 100 Mpc/h wavelengths quoted by several recent surveys. Thus baryonic
oscillations are not predicted to dominate existing measurements of clustering.
We examine several effects which may mask the features which are predicted, and
conclude that future galaxy surveys may be able to detect the oscillatory
features in the power spectrum provided baryons comprise more than 15% of the
total density, but that it will be a technically challenging achievement.Comment: 16 pages, 13 Figures, to be published in MNRA
Submm-bright QSOs at z~2: signposts of co-evolution at high z
We have assembled a sample of 5 X-ray and submm-luminous z~2 QSOs which are
therefore both growing their central black holes through accretion and forming
stars copiously at a critical epoch. Hence, they are good laboratories to
investigate the co-evolution of star formation and AGN. We have performed a
preliminary analysis of the AGN and SF contributions to their UV-to-FIR SEDs,
fitting them with simple direct (disk), reprocessed (torus) and star formation
components. All three are required by the data and hence we confirm that these
objects are undergoing strong star formation in their host galaxies at rates
500-2000 Msun/y. Estimates of their covering factors are between about 30 and
90%. In the future, we will assess the dependence of these results on the
particular models used for the components and relate their observed properties
to the intrinsice of the central engine and the SF material, as well as their
relevance for AGN-galaxy coevolution.Comment: 6 pages, 2 figures, contributed talk to "Nuclei of Seyfert galaxies
and QSOs - Central engine & conditions of star formation" November 6-8, 2012.
MPIfR, Bonn, Germany. Po
Threshold feedback control for a collective flashing ratchet: threshold dependence
We study the threshold control protocol for a collective flashing ratchet. In
particular, we analyze the dependence of the current on the values of the
thresholds. We have found analytical expressions for the small threshold
dependence both for the few and for the many particle case. For few particles
the current is a decreasing function of the thresholds, thus, the maximum
current is reached for zero thresholds. In contrast, for many particles the
optimal thresholds have a nonzero finite value. We have numerically checked the
relation that allows to obtain the optimal thresholds for an infinite number of
particles from the optimal period of the periodic protocol. These optimal
thresholds for an infinite number of particles give good results for many
particles. In addition, they also give good results for few particles due to
the smooth dependence of the current up to these threshold values.Comment: LaTeX, 10 pages, 7 figures, improved version to appear in Phys. Rev.
Pinned Low Energy Electronic Excitation in Metal Exchanged Vanadium Oxide Nanoscrolls
We measured the optical properties of mixed valent vanadium oxide nanoscrolls
and their metal exchanged derivatives in order to investigate the charge
dynamics in these compounds. In contrast to the prediction of a metallic state
for the metal exchanged derivatives within a rigid band model, we find that the
injected charges in Mn exchanged vanadium oxide nanoscrolls are pinned.
A low-energy electronic excitation associated with the pinned carriers appears
in the far infrared and persists at low temperature, suggesting that the
nanoscrolls are weak metals in their bulk form, dominated by inhomogeneous
charge disproportionation and Madelung energy effects.Comment: 4 figure
Submm-bright X-ray absorbed QSOs at z~2: insights into the co-evolution of AGN and star-formation
We have assembled a sample of 5 X-ray-absorbed and submm-luminous type 1 QSOs
at which are simultaneously growing their central black holes
through accretion and forming stars copiously. We present here the analysis of
their rest-frame UV to submm Spectral Energy Distributions (SEDs), including
new Herschel data. Both AGN (direct and reprocessed) and Star Formation (SF)
emission are needed to model their SEDs. From the SEDs and their UV-optical
spectra we have estimated the masses of their black holes , their intrinsic AGN bolometric luminosities
, Eddington ratios
and bolometric corrections
. These values are common among optically and
X-ray-selected type 1 QSOs (except for RX~J1249), except for the bolometric
corrections, which are higher. These objects show very high far-infrared
luminosities (2 - 8) and Star Formation
Rates SFRy. From their and the shape of their
FIR-submm emission we have estimated star-forming dust masses of . We have found evidence of a tentative correlation between the
gas column densities of the ionized absorbers detected in X-ray (N)
and . Our computed black hole masses are amongst the most massive known.Comment: Accepted for publication in MNRAS, December 22, 2014, 17 pages, 5
figure
Closed-loop control strategy with improved current for a flashing ratchet
We show how to switch on and off the ratchet potential of a collective
Brownian motor, depending only on the position of the particles, in order to
attain a current higher than or at least equal to that induced by any periodic
flashing. Maximization of instant velocity turns out to be the optimal protocol
for one particle but is nevertheless defeated by a periodic switching when a
sufficiently large ensemble of particles is considered. The protocol presented
in this article, although not the optimal one, yields approximately the same
current as the optimal protocol for one particle and as the optimal periodic
switching for an infinite number of them.Comment: 4 pages, 4 figure
Information and maximum power in a feedback controlled Brownian ratchet
Closed-loop or feedback controlled ratchets are Brownian motors that operate
using information about the state of the system. For these ratchets, we compute
the power output and we investigate its relation with the information used in
the feedback control. We get analytical expressions for one-particle and
few-particle flashing ratchets, and we find that the maximum power output has
an upper bound proportional to the information. In addition, we show that the
increase of the power output that results from changing the optimal open-loop
ratchet to a closed-loop ratchet also has an upper bound that is linear in the
information.Comment: LaTeX, 6 pages, 4 figures, improved version to appear in Eur. Phys.
J.
- …