17 research outputs found
New Magnetic Excitations in the Spin-Density-Wave of Chromium
Low-energy magnetic excitations of chromium have been reinvestigated with a
single-Q crystal using neutron scattering technique. In the transverse
spin-density-wave phase a new type of well-defined magnetic excitation is found
around (0,0,1) with a weak dispersion perpendicular to the wavevector of the
incommensurate structure. The magnetic excitation has an energy gap of E ~ 4
meV and at (0,0,1) exactly corresponds to the Fincher mode previously studied
only along the incommensurate wavevector.Comment: 4 pages, 4 figure
Dynamical model of the dielectric screening of conjugated polymers
A dynamical model of the dielectric screening of conjugated polymers is
introduced and solved using the density matrix renormalization group method.
The model consists of a line of quantized dipoles interacting with a polymer
chain. The polymer is modelled by the Pariser-Parr-Pople (P-P-P) model. It is
found that: (1) Compared to isolated, unscreened single chains, the screened
1Bu- exciton binding energy is typically reduced by ca. 1 eV to just over 1 eV;
(2) Covalent (magnon and bi-magnon) states are very weakly screened compared to
ionic (exciton) states; (3) Screening of the 1Bu- exciton is closer to the
dispersion than solvation limit.Comment: 12 pages, 2 figure
Nonadiabatic approach to dimerization gap and optical absorption coefficient of the Su-Schrieffer-Heeger model
An analytical nonadiabatic approach has been developed to study the
dimerization gap and the optical absorption coefficient of the
Su-Schrieffer-Heeger model where the electrons interact with dispersive quantum
phonons. By investigating quantitatively the effects of quantum phonon
fluctuations on the gap order and the optical responses in this system, we show
that the dimerization gap is much more reduced by the quantum lattice
fluctuations than the optical absorption coefficient is. The calculated optical
absorption coefficient and the density of states do not have the
inverse-square-root singularity, but have a peak above the gap edge and there
exist a significant tail below the peak. The peak of optical absorption
spectrum is not directly corresponding to the dimerized gap. Our results of the
optical absorption coefficient agree well with those of the experiments in both
the shape and the peak position of the optical absorption spectrum.Comment: 14 pages, 7 figures. to be published in PR