336 research outputs found

    Identifying the source of unknown microcystin genes and predicting microcystin variants by comparing genes within uncultured cyanobacterial cells

    Get PDF
    While multiple phylogenetic markers have been used in the culture independent study of microcystin producing cyanobacteria, in only a few instances have multiple markers been studied within individual cells, and in all cases these studies have been conducted with cultured isolates. Here, we isolate and evaluate large DNA fragments (\u3e 6 kb) encompassing two genes involved in microcystin biosynthesis (mcyA2 and mcyB1) and use them to identify the source of gene fragments found in water samples. Further investigation of these gene loci from individual cyanobacterial cells allowed for improved analysis of the genetic diversity within microcystin producers as well as a method to predict microcystin variants for individuals. These efforts have also identified the source of the novel mcyA genotype previously termed Microcystis-like that is pervasive in the Laurentian Great Lakes and predict the microcystin variant(s) that it produces

    Graphene Bridge for Photocatalytic Hydrogen Evolution with Gold Nanocluster Co-Catalysts

    Get PDF
    Published: 17 October 2022Herein, the UV light photocatalytic activity of an Au101NC-AlSrTiO3-rGO nanocomposite comprising 1 wt% rGO, 0.05 wt% Au101(PPh3)21Cl5 (Au101NC), and AlSrTiO3 evaluated for H2 production. The synthesis of Au101NC-AlSrTiO3-rGO nanocomposite followed two distinct routes: (1) Au101NC was first mixed with AlSrTiO3 followed by the addition of rGO (Au101NC-AlSrTiO3:rGO) and (2) Au101NC was first mixed with rGO followed by the addition of AlSrTiO3 (Au101NC-rGO:AlSrTiO3). Both prepared samples were annealed in air at 210 °C for 15 min. Inductively coupled plasma mass spectrometry and high-resolution scanning transmission electron microscopy showed that the Au101NC adhered almost exclusively to the rGO in the nanocomposite and maintained a size less than 2 nm. Under UV light irradiation, the Au101NC-AlSrTiO3:rGO nanocomposite produced H2 at a rate 12 times greater than Au101NC-AlSrTiO3 and 64 times greater than AlSrTiO3. The enhanced photocatalytic activity is attributed to the small particle size and high loading of Au101NC, which is achieved by non-covalent binding to rGO. These results show that significant improvements can be made to AlSrTiO3-based photocatalysts that use cluster co-catalysts by the addition of rGO as an electron mediator to achieve high cluster loading and limited agglomeration of the clusters.Hanieh Mousavi, Thomas D. Small, Shailendra K. Sharma, Vladimir B. Golovko, Cameron J. Shearer and Gregory F. Meth

    On including travel time reliability of road traffic in appraisal

    Get PDF
    In many countries, decision-making on proposals for national or regional infrastructure projects in passenger and freight transport includes carrying out a cost–benefit analysis for these projects. Reductions in travel times are usually a key benefit. However, if a project also reduces the variability of travel time, travellers, freight operators and shippers will enjoy additional benefits, the ‘reliability benefits’. Until now, these benefits are usually not included in the cost–benefit analysis. To include reliability of travel or transport time in the cost–benefit analysis of infrastructure projects not only monetary values of reliability, but also reliability forecasting models are needed. As a result of an extensive feasibility study carried out for the German Federal Ministry of Transport, Building and Urban Development this paper aims to provide a literature overview and outcomes of an expert panel on how best to calculate and monetise reliability benefits, synthesised into recommendations for implementing travel time reliability into existing transport models in the short, medium, and long term. The paper focuses on road transport, which has also been the topic for most of the available literature on modelling and valuing transport time reliability

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment