342 research outputs found

    Atomic X-ray Spectroscopy of Accreting Black Holes

    Full text link
    Current astrophysical research suggests that the most persistently luminous objects in the Universe are powered by the flow of matter through accretion disks onto black holes. Accretion disk systems are observed to emit copious radiation across the electromagnetic spectrum, each energy band providing access to rather distinct regimes of physical conditions and geometric scale. X-ray emission probes the innermost regions of the accretion disk, where relativistic effects prevail. While this has been known for decades, it also has been acknowledged that inferring physical conditions in the relativistic regime from the behavior of the X-ray continuum is problematic and not satisfactorily constraining. With the discovery in the 1990s of iron X-ray lines bearing signatures of relativistic distortion came the hope that such emission would more firmly constrain models of disk accretion near black holes, as well as provide observational criteria by which to test general relativity in the strong field limit. Here we provide an introduction to this phenomenon. While the presentation is intended to be primarily tutorial in nature, we aim also to acquaint the reader with trends in current research. To achieve these ends, we present the basic applications of general relativity that pertain to X-ray spectroscopic observations of black hole accretion disk systems, focusing on the Schwarzschild and Kerr solutions to the Einstein field equations. To this we add treatments of the fundamental concepts associated with the theoretical and modeling aspects of accretion disks, as well as relevant topics from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian Journal of Physics, in pres

    Speciation Analysis of Mercury in Seawater from the Lagoon of Venice by on-line Pre-concentration HPLC-ICP-MS

    Get PDF
    A method based on the coupling of HPLC with ICP-MS with an on-line pre-concentration micro-column has been developed for the analysis of inorganic and methyl mercury in the dissolved phase of natural waters. This method allows the rapid pre-concentration and matrix removal of interferences in complex matrices such as seawater with minimal sampling handling. Detection limits of 0.07 ng L−1 for inorganic mercury and 0.02 ng L−1 for methyl mercury have been achieved allowing the determination of inorganic mercury and methyl mercury in filtered seawater fromtheVenice lagoon. Good accuracy and reproducibility was demonstrated by the repeat analysis of the certified reference material BCR-579 coastal seawater. The developed HPLC separation was shown to be also suitable for the determination of methyl mercury in extracts of the particulate phase

    Photoelectron and threshold photoelectron valence spectra of pyridine

    Get PDF
    The pyridine molecule has been examined by the means of photoelectron and threshold photoelectron spectroscopies. Ionization energies were determined for both outer and inner valence orbitals and new adiabatic values were also resolved. Vibronic structure associated with several states was assigned mainly to be due to C-C stretches and ring bends. Additionally a Rydberg state converging to 7b2 state was ascribed. The data shown here are in a good agreement with previous results and brings some new insights into the electronic structure of this biologically and astrochemically relevant and important molecule

    Measurement of the ratio of the ppˉWp\bar{p}\to W+cc-jet cross section to the inclusive ppˉWp\bar{p}\to W+jets cross section

    Get PDF
    We present a measurement of the fraction of inclusive WW+jets events produced with net charm quantum number ±1\pm1, denoted WW+cc-jet, in ppˉp\bar{p} collisions at s=1.96\sqrt{s}=1.96 TeV using approximately 1~fb1^{-1} of data collected by the D0 detector at the Fermilab Tevatron Collider. We identify the WW+jets events via the leptonic WW boson decays. Candidate WW+cc-jet events are selected by requiring a jet containing a muon in association with a reconstructed WW boson and exploiting the charge correlation between this muon and WW boson decay lepton to perform a nearly model-independent background subtraction. We measure the fraction of WW+cc-jet events in the inclusive WW+jets sample for jet pT>20p_{T}>20 GeV and pseudorapidity η<2.5|\eta|<2.5 to be 0.074±0.019\pm0.019(stat.)±0.0140.012\pm^{0.012}_{0.014}(syst.), in agreement with theoretical predictions. The probability that background fluctuations could produce the observed fraction of WW+cc-jet events is estimated to be 2.5×1042.5\times 10^{-4}, which corresponds to a 3.5 σ\sigma statistical significance.Comment: submitted to Physics Letters

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV