162,911 research outputs found

    First-Principles Study of Integer Quantum Hall Transitions in Mesoscopic Samples

    Full text link
    We perform first principles numerical simulations to investigate resistance fluctuations in mesoscopic samples, near the transition between consecutive Quantum Hall plateaus. We use six-terminal geometry and sample sizes similar to those of real devices. The Hall and longitudinal resistances extracted from the generalized Landauer formula reproduce all the experimental features uncovered recently. We then use a simple generalization of the Landauer-B\"uttiker model, based on the interplay between tunneling and chiral currents -- the co-existing mechanisms for transport -- to explain the three distinct types of fluctuations observed, and identify the central region as the critical region.Comment: changes to acknowledgements onl

    Hyperspherical Close-Coupling Calculation of D-wave Positronium Formation and Excitation Cross Sections in Positron-Hydrogen Scattering

    Full text link
    Hyperspherical close-coupling method is used to calculate the elastic, positronium formation and excitation cross sections for positron collisions with atomic hydrogen at energies below the H(n=4) threshold for the J=2 partial wave. The resonances below each inelastic threshold are also analyzed. The adiabatic hyperspherical potential curves are used to identify the nature of these resonances.Comment: 12 pages(in a TeX file) +8 Postscript figure

    Synchronization of Chaotic Maps by Symmetric Common Noise

    Full text link
    Synchronization of identical chaotic systems subjected to common noise has been the subject of recent research. Studies on several chaotic systems have shown that, the synchronization is actually induced by the non-zero mean of the noise, and symmetric noise with zero-mean cannot lead to synchronization. Here it is presented that synchronization can be achieved by {\sl zero-mean} noise in some chaotic maps with large convergence regions.Comment: 5 pages, 4 figure