16,279 research outputs found

    Natural NMSSM with a Light Singlet Higgs and Singlino LSP

    Get PDF
    Supersymmetry (SUSY) is an attractive extension of the Standard Model (SM) of particle physics which solves the SM hierarchy problem. Motivated by the theoretical μ\mu-term problem of the Minimal Supersymmetric Model (MSSM), the Next-to MSSM (NMSSM) can also account for experimental deviations from the SM like the anomalous muon magnetic moment and the dark matter relic density. Natural SUSY, motivated by naturalness considerations, exhibits small fine tuning and a characteristic phenomenology with light higgsinos, stops and gluinos. We describe a scan in NMSSM parameter space motivated by Natural SUSY and guided by the phenomenology of an NMSSM with a slightly broken Peccei-Quinn symmetry and a lightly coupled singlet. We identify a scenario which survives experimental constraints with a light singlet Higgs and a singlino lightest SUSY particle. We then discuss how the scenario is not presently excluded by searches at the Large Hadron Collider (LHC) and which channels are promising for discovery at the LHC and International Linear Collider.Comment: Added results of checks on LHC Run 1 exclusion with CheckMAT

    ATLAS Searches for Beyond the Standard Model Higgs Bosons

    Full text link
    The present status of ATLAS searches for Higgs bosons in extensions of the Standard Model (SM) is presented. This includes searches for the Higgs bosons of the Two-Higgs-Doublet Model (2HDM), the Minimal Supersymmetric Model (MSSM), the Next-to-Minimal Supersymmetric Model (NMSSM) and models with an invisibly decaying Higgs boson. A review of the phenomenology of the Higgs sectors of these models is given together with the search strategy and the resulting experimental constraints.Comment: Presentation at the DPF 2013 Meeting of the American Physical Society Division of Particles and Fields, Santa Cruz, California, August 13-17, 201

    Classification of interacting electronic topological insulators in three dimensions

    Get PDF
    A fundamental open problem in condensed matter physics is how the dichotomy between conventional and topological band insulators is modified in the presence of strong electron interactions. We show that there are 6 new electronic topological insulators that have no non-interacting counterpart. Combined with the previously known band-insulators, these produce a total of 8 topologically distinct phases. Two of the new topological insulators have a simple physical description as Mott insulators in which the electron spins form spin analogs of the familiar topological band-insulator. The remaining are obtained as combinations of these two `topological paramagnets' and the topological band insulator. We prove that these 8 phases form a complete list of all possible interacting topological insulators, and are classified by a Z_2^3 group-structure. Experimental signatures are also discussed for these phases.Comment: New version contains more results on experimental signatures and a more rigorous proof of a key statement (see Appendix D,E), with references reorganize

    Gapped Symmetry Preserving Surface-State for the Electron Topological Insulator

    Full text link
    It is well known that the 3D electronic topological insulator (TI) with charge-conservation and time-reversal symmetry cannot have a trivial insulating surface that preserves symmetry. It is often implicitly assumed that if the TI surface preserves both symmetries then it must be gapless. Here we show that it is possible for the TI surface to be both gapped and symmetry-preserving, at the expense of having surface-topological order. In contrast to analogous bosonic topological insulators, this symmetric surface topological order is intrinsically non-Abelian. We show that the surface-topological order provides a complete non-perturbative definition of the electron TI that transcends a free-particle band-structure picture, and could provide a useful perspective for studying strongly correlated topological Mott insulators.Comment: 12 pages, 2 figures, (published version

    Logarithmically Slow Relaxation in Quasi-Periodically Driven Random Spin Chains

    Full text link
    We simulate the dynamics of a disordered interacting spin chain subject to a quasi-periodic time-dependent drive, corresponding to a stroboscopic Fibonacci sequence of two distinct Hamiltonians. Exploiting the recursive drive structure, we can efficiently simulate exponentially long times. After an initial transient, the system exhibits a long-lived glassy regime characterized by a logarithmically slow growth of entanglement and decay of correlations analogous to the dynamics at the many-body delocalization transition. Ultimately, at long time-scales, which diverge exponentially for weak or rapid drives, the system thermalizes to infinite temperature. The slow relaxation enables metastable dynamical phases, exemplified by a "time quasi-crystal" in which spins exhibit persistent oscillations with a distinct quasi-periodic pattern from that of the drive. We show that in contrast with Floquet systems, a high-frequency expansion strictly breaks down above fourth order, and fails to produce an effective static Hamiltonian that would capture the pre-thermal glassy relaxation.Comment: 6+3 pages, 4+4 figures; v2. minor improvements; as publishe

    Zero-bias peaks in spin-orbit coupled superconducting wires with and without Majorana end-states

    Full text link
    One of the simplest proposed experimental probes of a Majorana bound-state is a quantized (2e^2/h) value of zero-bias tunneling conductance. When temperature is somewhat larger than the intrinsic width of the Majorana peak, conductance is no longer quantized, but a zero-bias peak can remain. Such a non-quantized zero-bias peak has been recently reported for semiconducting nanowires with proximity induced superconductivity. In this paper we analyze the relation of the zero-bias peak to the presence of Majorana end-states, by simulating the tunneling conductance for multi-band wires with realistic amounts of disorder. We show that this system generically exhibits a (non-quantized) zero-bias peak even when the wire is topologically trivial and does not possess Majorana end-states. We make comparisons to recent experiments, and discuss the necessary requirements for confirming the existence of a Majorana state.Comment: 5 pages, 4 Figure

    A two-dimensional mixing length theory of convective transport

    Full text link
    The helioseismic observations of the internal rotation profile of the Sun raise questions about the two-dimensional (2D) nature of the transport of angular momentum in stars. Here we derive a convective prescription for axisymmetric (2D) stellar evolution models. We describe the small scale motions by a spectrum of unstable linear modes in a Boussinesq fluid. Our saturation prescription makes use of the angular dependence of the linear dispersion relation to estimate the anisotropy of convective velocities. We are then able to provide closed form expressions for the thermal and angular momentum fluxes with only one free parameter, the mixing length. We illustrate our prescription for slow rotation, to first order in the rotation rate. In this limit, the thermodynamical variables are spherically symetric, while the angular momentum depends both on radius and latitude. We obtain a closed set of equations for stellar evolution, with a self-consistent description for the transport of angular momentum in convective regions. We derive the linear coefficients which link the angular momentum flux to the rotation rate (Λ\Lambda- effect) and its gradient (α\alpha-effect). We compare our results to former relevant numerical work.Comment: MNRAS accepted, 10 pages, 1 figure, version prior to language editio
    corecore