39,698 research outputs found

    Uniqueness of Ground States for Short-Range Spin Glasses in the Half-Plane

    Full text link
    We consider the Edwards-Anderson Ising spin glass model on the half-plane Z×Z+Z \times Z^+ with zero external field and a wide range of choices, including mean zero Gaussian, for the common distribution of the collection J of i.i.d. nearest neighbor couplings. The infinite-volume joint distribution K(J,α)K(J,\alpha) of couplings J and ground state pairs α\alpha with periodic (respectively, free) boundary conditions in the horizontal (respectively, vertical) coordinate is shown to exist without need for subsequence limits. Our main result is that for almost every J, the conditional distribution K(αJ)K(\alpha|J) is supported on a single ground state pair.Comment: 20 pages, 3 figure

    The Real Meaning of Complex Minkowski-Space World-Lines

    Full text link
    In connection with the study of shear-free null geodesics in Minkowski space, we investigate the real geometric effects in real Minkowski space that are induced by and associated with complex world-lines in complex Minkowski space. It was already known, in a formal manner, that complex analytic curves in complex Minkowski space induce shear-free null geodesic congruences. Here we look at the direct geometric connections of the complex line and the real structures. Among other items, we show, in particular, how a complex world-line projects into the real Minkowski space in the form of a real shear-free null geodesic congruence.Comment: 16 page

    Interfaces (and Regional Congruence?) in Spin Glasses

    Full text link
    We present a general theorem restricting properties of interfaces between thermodynamic states and apply it to the spin glass excitations observed numerically by Krzakala-Martin and Palassini-Young in spatial dimensions d=3 and 4. We show that such excitations, with interface dimension smaller than d, cannot yield regionally congruent thermodynamic states. More generally, zero density interfaces of translation-covariant excitations cannot be pinned (by the disorder) in any d but rather must deflect to infinity in the thermodynamic limit. Additional consequences concerning regional congruence in spin glasses and other systems are discussed.Comment: 4 pages (ReVTeX); 1 figure; submitted to Physical Review Letter

    Are There Incongruent Ground States in 2D Edwards-Anderson Spin Glasses?

    Full text link
    We present a detailed proof of a previously announced result (C.M. Newman and D.L. Stein, Phys. Rev. Lett. v. 84, pp. 3966--3969 (2000)) supporting the absence of multiple (incongruent) ground state pairs for 2D Edwards-Anderson spin glasses (with zero external field and, e.g., Gaussian couplings): if two ground state pairs (chosen from metastates with, e.g., periodic boundary conditions) on the infinite square lattice are distinct, then the dual bonds where they differ form a single doubly-infinite, positive-density domain wall. It is an open problem to prove that such a situation cannot occur (or else to show --- much less likely in our opinion --- that it indeed does happen) in these models. Our proof involves an analysis of how (infinite-volume) ground states change as (finitely many) couplings vary, which leads us to a notion of zero-temperature excitation metastates, that may be of independent interest.Comment: 18 pages (LaTeX); 1 figure; minor revisions; to appear in Commun. Math. Phy