749 research outputs found
Mapping the spin-dependent electron reflectivity of Fe and Co ferromagnetic thin films
Spin Polarized Low Energy Electron Microscopy is used as a spin dependent
spectroscopic probe to study the spin dependent specular reflection of a
polarized electron beam from two different magnetic thin film systems:
Fe/W(110) and Co/W(110). The reflectivity and spin-dependent
exchange-scattering asymmetry are studied as a function of electron kinetic
energy and film thickness, as well as the time dependence. The largest value of
the figure of merit for spin polarimetry is observed for a 5 monolayer thick
film of Co/W(110) at an electron kinetic energy of 2eV. This value is 2 orders
of magnitude higher than previously obtained with state of the art Mini-Mott
polarimeter. We discuss implications of our results for the development of an
electron-spin-polarimeter using the exchange-interaction at low energy.Comment: 5 pages, 4 figure
Bond stretching phonon softening and angle-resolved photoemission kinks in optimally doped Bi2Sr1.6La0.4Cu2O6 superconductors
We report the first measurement of the optical phonon dispersion in optimally
doped single layer Bi2Sr1.6La0.4Cu2O6+delta using inelastic x-ray scattering.
We found a strong softening of the Cu-O bond stretching phonon at about
q=(0.25,0,0) from 76 to 60 meV, similar to the one reported in other cuprates.
A direct comparison with angle-resolved photoemission spectroscopy measurements
taken on the same sample, revealed an excellent agreement in terms of energy
and momentum between the ARPES nodal kink and the soft part of the bond
stretching phonon. Indeed, we find that the momentum space where a 63 meV kink
is observed can be connected with a vector q=(xi,0,0) with xi~0.22, which
corresponds exactly to the soft part of the bond stretching phonon mode. This
result supports an interpretation of the ARPES kink in terms of electron-phonon
coupling.Comment: submited to PR
A universal high energy anomaly in angle resolved photoemission spectra of high temperature superconductors - possible evidence of spinon and holon branches
A universal high energy anomaly in the single particle spectral function is
reported in three different families of high temperature superconductors by
using angle-resolved photoemission spectroscopy. As we follow the dispersing
peak of the spectral function from the Fermi energy to the valence band
complex, we find dispersion anomalies marked by two distinctive high energy
scales, E_1=~ 0.38 eV and E_2=~0.8 eV. E_1 marks the energy above which the
dispersion splits into two branches. One is a continuation of the near
parabolic dispersion, albeit with reduced spectral weight, and reaches the
bottom of the band at the gamma point at ~0.5 eV. The other is given by a peak
in the momentum space, nearly independent of energy between E_1 and E_2. Above
E_2, a band-like dispersion re-emerges. We conjecture that these two energies
mark the disintegration of the low energy quasiparticles into a spinon and
holon branch in the high T_c cuprates.Comment: accepted for publication in Phys. Rev. Let
Instability of two dimensional graphene: Breaking sp2 bonds with soft X-rays
We study the stability of various kinds of graphene samples under soft X-ray
irradiation. Our results show that in single layer exfoliated graphene (a
closer analogue to two dimensional material), the in-plane carbon-carbon bonds
are unstable under X-ray irradiation, resulting in nanocrystalline structures.
As the interaction along the third dimension increases by increasing the number
of graphene layers or through the interaction with the substrate (epitaxial
graphene), the effect of X-ray irradiation decreases and eventually becomes
negligible for graphite and epitaxial graphene. Our results demonstrate the
importance of the interaction along the third dimension in stabilizing the long
range in-plane carbon-carbon bonding, and suggest the possibility of using
X-ray to pattern graphene nanostructures in exfoliated graphene.Comment: 4 pages, 3 figures, Phys. Rev. B rapid communication, in pres
A high-efficiency spin-resolved phototemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry
We describe a spin-resolved electron spectrometer capable of uniquely
efficient and high energy resolution measurements. Spin analysis is obtained
through polarimetry based on low-energy exchange scattering from a
ferromagnetic thin-film target. This approach can achieve a similar analyzing
power (Sherman function) as state-of-the-art Mott scattering polarimeters, but
with as much as 100 times improved efficiency due to increased reflectivity.
Performance is further enhanced by integrating the polarimeter into a
time-of-flight (TOF) based energy analysis scheme with a precise and flexible
electrostatic lens system. The parallel acquisition of a range of electron
kinetic energies afforded by the TOF approach results in an order of magnitude
(or more) increase in efficiency compared to hemispherical analyzers. The lens
system additionally features a 90{\deg} bandpass filter, which by removing
unwanted parts of the photoelectron distribution allows the TOF technique to be
performed at low electron drift energy and high energy resolution within a wide
range of experimental parameters. The spectrometer is ideally suited for
high-resolution spin- and angle-resolved photoemission spectroscopy
(spin-ARPES), and initial results are shown. The TOF approach makes the
spectrometer especially ideal for time-resolved spin-ARPES experiments.Comment: 16 pages, 11 figure
Tracking Cooper Pairs in a Cuprate Superconductor by Ultrafast Angle-Resolved Photoemission
In high-temperature superconductivity, the process that leads to the
formation of Cooper pairs, the fundamental charge carriers in any
superconductor, remains mysterious. We use a femtosecond laser pump pulse to
perturb superconducting Bi2Sr2CaCu2O8+{\delta}, and study subsequent dynamics
using time- and angle-resolved photoemission and infrared reflectivity probes.
Gap and quasiparticle population dynamics reveal marked dependencies on both
excitation density and crystal momentum. Close to the d-wave nodes, the
superconducting gap is sensitive to the pump intensity and Cooper pairs
recombine slowly. Far from the nodes pumping affects the gap only weakly and
recombination processes are faster. These results demonstrate a new window into
the dynamical processes that govern quasiparticle recombination and gap
formation in cuprates.Comment: 22 pages, 9 figure
Topological surface states above the Fermi energy in
We report a detailed experimental study of the band structure of the recently
discovered topological material . Using
the combination of scanning tunneling spectroscopy and angle-resolved
photo-emission spectroscopy with surface K-doping, we probe the band structure
of with energy and momentum resolution
above the Fermi level. Our experiments show the presence of multiple surface
states with a linear Dirac-like dispersion, consistent with the predictions
from previously reported band structure calculations. In particular, scanning
tunneling spectroscopy measurements provide the first experimental evidence for
the strong topological surface state predicted at 460 meV, which stems from the
band inversion between Hf-d and Te-p orbitals. This band inversion comprised of
more localized d-states could result in a better surface-to-bulk conductance
ratio relative to more traditional topological insulators.Comment: Supplementary materials available upon reques
Bilayer splitting and c-axis coupling in bilayer manganites showing colossal magnetoresistance
By performing angle-resolved photoemission spectroscopy of the bilayer
colossal magnetoresistive (CMR) manganite, , we
provide the complete mapping of the Fermi level spectral weight topology. Clear
and unambiguous bilayer splitting of the in-plane 3d band, mapped
throughout the Brillouin zone, and the full mapping of the 3d band
are reported. Peculiar doping and temperature dependencies of these bands imply
that as transition from the ferromagnetic metallic phase approaches, either as
a function of doping or temperature, coherence along the c-axis between planes
within the bilayer is lost, resulting in reduced interplane coupling. These
results suggest that interplane coupling plays a large role in the CMR
transition.Comment: 8 pages, 6 figure
- …