735 research outputs found

    A nilpotent symmetry of quantum gauge theories

    Get PDF
    For the Becchi-Rouet-Stora-Tyutin (BRST) invariant extended action for any gauge theory, there exists another off-shell nilpotent symmetry. For linear gauges, it can be elevated to a symmetry of the quantum theory and used in the construction of the quantum effective action. Generalizations for nonlinear gauges and actions with higher order ghost terms are also possible.Comment: RevTeX, 9 pages, several changes to include generalizations to quartic and higher ghost terms and non-linear gauges. Abstract changed. Final version to be publishe

    A Functional and Lagrangian Formulation of Two-Dimensional Topological Gravity

    Get PDF
    We reconsider two-dimensional topological gravity in a functional and lagrangian framework. We derive its Slavnov-Taylor identities and discuss its (in)dependence on the background gauge. Correlators of reparamerization invariant observables are shown to be globally defined forms on moduli space. The potential obstruction to their gauge-independence is the non-triviality of the line bundle on moduli space Lx{\cal L}_x, whose first Chern-class is associated to the topological invariants of Mumford, Morita and Miller. Based on talks given at the Fubini Fest, Torino, 24-26 February 1994, and at the Workshop on String Theory, Trieste, 20-22 April 1994.Comment: 11 pages, harvmac, CERN-TH-7302/94, GEF-Th-6/199

    The Renormalization of Non-Commutative Field Theories in the Limit of Large Non-Commutativity

    Full text link
    We show that renormalized non-commutative scalar field theories do not reduce to their planar sector in the limit of large non-commutativity. This follows from the fact that the RG equation of the Wilson-Polchinski type which describes the genus zero sector of non-commutative field theories couples generic planar amplitudes with non-planar amplitudes at exceptional values of the external momenta. We prove that the renormalization problem can be consistently restricted to this set of amplitudes. In the resulting renormalized theory non-planar divergences are treated as UV divergences requiring appropriate non-local counterterms. In 4 dimensions the model turns out to have one more relevant (non-planar) coupling than its commutative counterpart. This non-planar coupling is ``evanescent'': although in the massive (but not in the massless) case its contribution to planar amplitudes vanishes when the floating cut-off equals the renormalization scale, this coupling is needed to make the Wilsonian effective action UV finite at all values of the floating cut-off.Comment: 35 pages, 8 figures; typos correcte

    BRS "Symmetry", prehistory and history

    Full text link
    Prehistory - Starting from 't Hooft's (1971) we have a short look at Taylor's and Slavnov's works (1971-72) and at the lectures given by Rouet and Stora in Lausanne-1973 which determine the transition from pre-history to history. History - We give a brief account of the main analyses and results of the BRS collaboration concerning the renormalized gauge theories, in particular the method of the regularization independent, algebraic renormalization, the algebraic proof of S-matrix unitarity and that of gauge choice independence of the renormalized physics. We conclude this report with a suggestion to the crucial question: what could remain of BRS invariance beyond perturbation theory.Comment: Talk given at: A Special day in honour of Raymond Stora, Annecy, July 8, 201

    Constructive algebraic renormalization of the abelian Higgs-Kibble model

    Get PDF
    We propose an algorithm, based on Algebraic Renormalization, that allows the restoration of Slavnov-Taylor invariance at every order of perturbation expansion for an anomaly-free BRS invariant gauge theory. The counterterms are explicitly constructed in terms of a set of one-particle-irreducible Feynman amplitudes evaluated at zero momentum (and derivatives of them). The approach is here discussed in the case of the abelian Higgs-Kibble model, where the zero momentum limit can be safely performed. The normalization conditions are imposed by means of the Slavnov-Taylor invariants and are chosen in order to simplify the calculation of the counterterms. In particular within this model all counterterms involving BRS external sources (anti-fields) can be put to zero with the exception of the fermion sector.Comment: Jul, 1998, 31 page

    On the correspondence between the classical and quantum gravity

    Get PDF
    The relationship between the classical and quantum theories of gravity is reexamined. The value of the gravitational potential defined with the help of the two-particle scattering amplitudes is shown to be in disagreement with the classical result of General Relativity given by the Schwarzschild solution. It is shown also that the potential so defined fails to describe whatever non-Newtonian interactions of macroscopic bodies. An alternative interpretation of the â„Ź0\hbar^0-order part of the loop corrections is given directly in terms of the effective action. Gauge independence of that part of the one-loop radiative corrections to the gravitational form factors of the scalar particle is proved, justifying the interpretation proposed.Comment: Latex 2.09, 3 ps. figures, 17 page

    On a class of embeddings of massive Yang-Mills theory

    Full text link
    A power-counting renormalizable model into which massive Yang-Mills theory is embedded is analyzed. The model is invariant under a nilpotent BRST differential s. The physical observables of the embedding theory, defined by the cohomology classes of s in the Faddeev-Popov neutral sector, are given by local gauge-invariant quantities constructed only from the field strength and its covariant derivatives.Comment: LATEX, 34 pages. One reference added. Version published in the journa
    • …
    corecore