3,025 research outputs found
Evidence of radius inflation in stars approaching the slow-rotator sequence
Average stellar radii in open clusters can be estimated from rotation periods
and projected rotational velocities under the assumption of random orientation
of the spin axis. Such estimates are independent of distance, interstellar
absorption, and models, but their validity can be limited by missing data
(truncation) or data that only represent upper/lower limits (censoring). We
present a new statistical analysis method to estimate average stellar radii in
the presence of censoring and truncation. We use theoretical distribution
functions of the projected stellar radius to define a likelihood
function in the presence of censoring and truncation. Average stellar radii in
magnitude bins are then obtained by a maximum likelihood parametric estimation
procedure. This method is capable of recovering the average stellar radius
within a few percent with as few as 10 measurements. Here it is
applied for the first time to the dataset available for the Pleiades. We find
an agreement better than 10 percent between the observed vs
relationship and current standard stellar models for 1.2
0.85 with no evident bias. Evidence of a systematic deviation at
level are found for stars with 0.8 0.6 approaching the
slow-rotator sequence. Fast-rotators ( < 2 d) agree with standard models
within 15 percent with no systematic deviations in the whole 1.2 0.5 range. The evidence found of a possible radius inflation
just below the lower mass limit of the slow-rotator sequence indicates a
possible connection with the transition from the fast to the slow-rotator
sequence.Comment: Accepted by Astronomy and Astrophysics, 11 pages, 6 figure
Evidence of New Magnetic Transitions in Late-Type Dwarfs from Gaia DR2
The second Gaia data release contains the identification of 147 535 low-mass
() rotational modulation variable candidates on (or close
to) the main sequence, together with their rotation period and modulation
amplitude. The richness, the period and amplitude range, and the photometric
precision of this sample make it possible to unveil, for the first time,
signatures of different surface inhomogeneity regimes in the amplitude-period
density diagram. The modulation amplitude distribution shows a clear
bimodality, with an evident gap at periods d. The low amplitude
branch, in turn, shows a period bimodality with a main clustering at periods 5 - 10 d and a secondary clustering of ultra-fast rotators at d. The amplitude-period multimodality is correlated with the position in
the period-absolute magnitude (or period-color) diagram, with the low- and
high-amplitude stars occupying different preferential locations. Here we argue
that such a multimodality represents a further evidence of the existence of
different regimes of surface inhomogeneities in young and middle-age low-mass
stars and we lay out possible scenarios for their evolution, which manifestly
include rapid transitions from one regime to another. In particular, the data
indicate that stars spinning up close to break-up velocity undergo a very rapid
change in their surface inhomogeneities configuration, which is revealed here
for the first time. The multimodality can be exploited to identify field stars
of age 100 -- 600 Myr belonging to the slow-rotator low-amplitude
sequence, for which age can be estimated from the rotation period via
gyrochronology relationships.Comment: 15 pages, 6 figures, Accepted by Ap
Activity cycles in members of young loose stellar associations
Magnetic cycles have been detected in tens of solar-like stars. The
relationship between the cycle properties and global stellar parameters is not
fully understood yet.
We searched for activity cycles in 90 solar-like stars with ages between 4
and 95 Myr aiming to investigate the properties of activity cycles in this age
range.
We measured the length of a given cycle by analyzing the long-term
time-series of three activity indexes. For each star, we computed also the
global magnetic activity index that is proportional to the amplitude of
the rotational modulation and is a proxy of the mean level of the surface
magnetic activity. We detected activity cycles in 67 stars. Secondary cycles
were also detected in 32 stars. The lack of correlation between and
suggest that these stars belong to the Transitional Branch and that
the dynamo acting in these stars is different from the solar one. This
statement is also supported by the analysis of the butterfly diagrams.
We computed the Spearman correlation coefficient between ,
and different stellar parameters. We found that is
uncorrelated with all the investigated parameters. The index is
positively correlated with the convective turn-over time-scale, the magnetic
diffusivity time-scale , and the dynamo number , whereas
it is anti-correlated with the effective temperature , the
photometric shear and the radius at which
the convective zone is located.
We found that is about constant and that decreases with the
stellare age in the range 4-95 Myr. We investigated the magnetic activity of AB
Dor A by merging ASAS time-series with previous long-term photometric data. We
estimated the length of the AB Dor A primary cycle as .Comment: 19 pages , 15 figures, accepte
Modelling Online Gaming Metacognitions: The Role of Time Spent Gaming in Predicting Problematic Internet Use
© 2020, The Author(s). In recent years there have been growing concerns about problematic Internet use (PIU) as potential mental health problem. Among the many activities available on the Internet, the time spent gaming appears one of the most frequent risk factors in developing PIU. The aim of the current study was to model the relationship between negative affect, metacognitions about online gaming, frequency of online gaming and PIU. A total of 326 Italian gamers (mean age = 27 years, SD = 5.65 years; 93.3% males) participated in the study. The pattern of relationships specified by the theoretical model was examined through path analysis. Results showed that negative affect was directly associated with all other variables. Specifically, positive, strong and direct associations were found between negative affect and both positive and negative metacognitions about online gaming. Moreover, negative metacognitions about online gaming were strongly linked to PIU. Overall, the theoretical model was supported showing that metacognitions about online gaming may play a role in the association between time spent on online gaming to a broader pattern of PIU. Results are discussed within the context of the metacognitive model of psychopathology and clinical implications based on this model are outlined
Lower limit for differential rotation in members of young loose stellar associations
Surface differential rotation (SDR) plays a key role in dynamo models. SDR
estimates are therefore essential for constraining theoretical models. We
measure a lower limit to SDR in a sample of solar-like stars belonging to young
associations with the aim of investigating how SDR depends on global stellar
parameters in the age range (4-95 Myr). The rotation period of a solar-like
star can be recovered by analyzing the flux modulation caused by dark spots and
stellar rotation. The SDR and the latitude migration of dark-spots induce a
modulation of the detected rotation period. We employ long-term photometry to
measure the amplitude of such a modulation and to compute the quantity
DeltaOmega_phot =2p/P_min -2pi/P_max that is a lower limit to SDR. We find that
DeltaOmega_phot increases with the stellar effective temperature and with the
global convective turn-over time-scale tau_c. We find that DeltaOmega_phot is
proportional to Teff^2.18pm 0.65 in stars recently settled on the ZAMS. This
power law is less steep than those found by previous authors, but closest to
recent theoretical models. We find that DeltaOmega_phot steeply increases
between 4 and 30 Myr and that itis almost constant between 30 and 95 Myr in a 1
M_sun star. We find also that the relative shear increases with the Rossby
number Ro. Although our results are qualitatively in agreement with
hydrodynamical mean-field models, our measurements are systematically higher
than the values predicted by these models. The discrepancy between
DeltaOmega_phot measurements and theoretical models is particularly large in
stars with periods between 0.7 and 2 d. Such a discrepancy, together with the
anomalous SDR measured by other authors for HD 171488 (rotating in 1.31 d),
suggests that the rotation period could influence SDR more than predicted by
the models.Comment: 23 pages, 15 figures, 5 tables,accepted by Astronomy and Astrophysic
The Yale-Potsdam Stellar Isochrones (YaPSI)
We introduce the Yale-Potsdam Stellar Isochrones (YaPSI), a new grid of
stellar evolution tracks and isochrones of solar-scaled composition. In an
effort to improve the Yonsei-Yale database, special emphasis is placed on the
construction of accurate low-mass models (Mstar < 0.6 Msun), and in particular
of their mass-luminosity and mass-radius relations, both crucial in
characterizing exoplanet-host stars and, in turn, their planetary systems. The
YaPSI models cover the mass range 0.15 to 5.0 Msun, densely enough to permit
detailed interpolation in mass, and the metallicity and helium abundance ranges
[Fe/H] = -1.5 to +0.3, and Y = 0.25 to 0.37, specified independently of each
other (i.e., no fixed Delta Y/Delta Z relation is assumed). The evolutionary
tracks are calculated from the pre-main sequence up to the tip of the red giant
branch. The isochrones, with ages between 1 Myr and 20 Gyr, provide UBVRI
colors in the Johnson-Cousins system, and JHK colors in the homogeneized
Bessell & Brett system, derived from two different semi-empirical Teff-color
calibrations from the literature. We also provide utility codes, such as an
isochrone interpolator in age, metallicity, and helium content, and an
interface of the tracks with an open-source Monte Carlo Markov-Chain tool for
the analysis of individual stars. Finally, we present comparisons of the YaPSI
models with the best empirical mass- luminosity and mass-radius relations
available to date, as well as isochrone fitting of well-studied steComment: 17 pages, 14 figures; accepted for publication in the Astrophysical
Journa
PEPSI deep spectra. III. A chemical analysis of the ancient planet-host star Kepler-444
We obtained an LBT/PEPSI spectrum with very high resolution and high
signal-to-noise ratio (S/N) of the K0V host Kepler-444, which is known to host
5 sub-Earth size rocky planets. The spectrum has a resolution of R=250,000, a
continuous wavelength coverage from 4230 to 9120A, and S/N between 150 and
550:1 (blue to red). We performed a detailed chemical analysis to determine the
photospheric abundances of 18 chemical elements, in order to use the abundances
to place constraints on the bulk composition of the five rocky planets. Our
spectral analysis employs the equivalent width method for most of our spectral
lines, but we used spectral synthesis to fit a small number of lines that
require special care. In both cases, we derived our abundances using the MOOG
spectral analysis package and Kurucz model atmospheres. We find no correlation
between elemental abundance and condensation temperature among the refractory
elements. In addition, using our spectroscopic stellar parameters and isochrone
fitting, we find an age of 10+/-1.5 Gyr, which is consistent with the
asteroseismic age of 11+/-1 Gyr. Finally, from the photospheric abundances of
Mg, Si, and Fe, we estimate that the typical Fe-core mass fraction for the
rocky planets in the Kepler-444 system is approximately 24 per cent. If our
estimate of the Fe-core mass fraction is confirmed by more detailed modeling of
the disk chemistry and simulations of planet formation and evolution in the
Kepler-444 system, then this would suggest that rocky planets in more
metal-poor and alpha-enhanced systems may tend to be less dense than their
counterparts of comparable size in more metal-rich systems.Comment: in press, 11 pages, 3 figures, data available from pepsi.aip.d
The importance of thinking styles in predicting binge eating
Impulsivity, Body Mass Index, negative emotions and irrational food beliefs are often reported as predictors of binge eating. In the current study we explored the role played by two thinking styles, namely food thought suppression and desire thinking, in predicting binge eating among young adults controlling for established predictors of this condition. A total of 338 university students (268 females) participated in this study by completing a battery of questionnaires measuring the study variables. Path analysis revealed that impulsivity was not associated with binge eating, that Body Mass Index and negative emotions predicted binge eating, and that irrational food beliefs only influenced binge eating via food thought suppression and desire thinking. In conclusion, thinking styles appear an important predictor of binge eating and they should be taken into consideration when developing clinical interventions for binge eating
- …