56 research outputs found

    TarTar: A Timed Automata Repair Tool

    Full text link
    We present TarTar, an automatic repair analysis tool that, given a timed diagnostic trace (TDT) obtained during the model checking of a timed automaton model, suggests possible syntactic repairs of the analyzed model. The suggested repairs include modified values for clock bounds in location invariants and transition guards, adding or removing clock resets, etc. The proposed repairs are guaranteed to eliminate executability of the given TDT, while preserving the overall functional behavior of the system. We give insights into the design and architecture of TarTar, and show that it can successfully repair 69% of the seeded errors in system models taken from a diverse suite of case studies.Comment: 15 pages, 7 figure

    Genetic Improvement of Software (Dagstuhl Seminar 18052)

    Get PDF
    We document the program and the immediate outcomes of Dagstuhl Seminar 18052 ‚ÄúGenetic Improvement of Software‚ÄĚ. The seminar brought together researchers in Genetic Improvement (GI) and related areas of software engineering to investigate what is achievable with current technology and the current impediments to progress and how GI can affect the software development process. Several talks covered the state-of-the-art and work in progress. Seven emergent topics have been identified ranging from the nature of the GI search space through benchmarking and practical applications. The seminar has already resulted in multiple research paper publications. Four by participants of the seminar will be presented at the GI workshop co-located with the top conference in software engineering - ICSE. Several researchers started new collaborations, results of which we hope to see in the near future

    Babel Pidgin: SBSE Can Grow and Graft Entirely New Functionality into a Real World System

    Full text link

    Exploring Fitness and Edit Distance of Mutated Python Programs

    Get PDF
    Genetic Improvement (GI) is the process of using computational search techniques to improve existing software e.g. in terms of execution time, power consumption or correctness. As in most heuristic search algorithms, the search is guided by fitness with GI searching the space of program variants of the original software. The relationship between the program space and fitness is seldom simple and often quite difficult to analyse. This paper makes a preliminary analysis of GI’s fitness distance measure on program repair with three small Python programs. Each program undergoes incremental mutations while the change in fitness as measured by proportion of tests passed is monitored. We conclude that the fitnesses of these programs often does not change with single mutations and we also confirm the inherent discreteness of bug fixing fitness functions. Although our findings cannot be assumed to be general for other software they provide us with interesting directions for further investigation

    Staged program repair with condition synthesis

    Full text link

    Comparing Genetic Programming Approaches for Non-functional Genetic Improvement

    Get PDF
    Genetic improvement (GI) uses automated search to find improved versions of existing software. While most GI work use genetic programming (GP) as the underlying search process, focus is usually given to the target software only. As a result, specifics of GP algorithms for GI are not well understood and rarely compared to one another. In this work, we propose a robust experimental protocol to compare different GI search processes and investigate several variants of GP- and random-based approaches. Through repeated experiments, we report a comparative analysis of these approaches, using one of the previously used GI scenarios: improvement of runtime of the MiniSAT satisfiability solver. We conclude that the test suites used have the most significant impact on the GI results. Both random and GP-based approaches are able to find improved software, even though the percentage of viable software variants is significantly smaller in the random case ( 14.5% vs. 80.1%). We also report that GI produces MiniSAT variants up to twice as fast as the original on sets of previously unseen instances from the same application domain

    Polytypic Genetic Programming

    Get PDF
    Program synthesis via heuristic search often requires a great deal of boilerplate code to adapt program APIs to the search mechanism. In addition, the majority of existing approaches are not type-safe: i.e. they can fail at runtime because the search mechanisms lack the strict type information often available to the compiler. In this article, we describe Polytope, a Scala framework that uses polytypic programming, a relatively recent advance in program abstraction. Polytope requires a minimum of boilerplate code and supports a form of strong-typing in which type rules are automatically enforced by the compiler, even for search operations such as mutation which are applied at run-time. By operating directly on language-native expressions, it provides an embeddable optimization procedure for existing code. We give a tutorial example of the specific polytypic approach we adopt and compare both runtime efficiency and required lines of code against the well-known EpochX GP framework, showing comparable performance in the former and the complete elimination of boilerplate for the latter

    Formal reasoning about the security of amazon web services

    Get PDF
    We report on the development and use of formal verification tools within Amazon Web Services (AWS) to increase the security assurance of its cloud infrastructure and to help customers secure themselves. We also discuss some remaining challenges that could inspire future research in the community

    Search Based Clustering for Protecting Software with Diversified Updates

    Get PDF
    Reverse engineering is usually the stepping stone of a variety of at-tacks aiming at identifying sensitive information (keys, credentials, data, algo-rithms) or vulnerabilities and Ô¨āaws for broader exploitation. Software applica-tions are usually deployed as identical binary code installed on millions of com-puters, enabling an adversary to develop a generic reverse-engineering strategy that, if working on one code instance, could be applied to crack all the other in-stances. A solution to mitigate this problem is represented by Software Diversity, which aims at creating several structurally different (but functionally equivalent) binary code versions out of the same source code, so that even if a successful attack can be elaborated for one version, it should not work on a diversiÔ¨Āed ver-sion. In this paper, we address the problem of maximizing software diversity from a search-based optimization point of view. The program to protect is subject to a catalogue of transformations to generate many candidate versions. The problem of selecting the subset of most diversiÔ¨Āed versions to be deployed is formulated as an optimisation problem, that we tackle with different search heuristics. We show the applicability of this approach on some popular Android apps
    • ‚Ķ
    corecore