8 research outputs found

    Limiting distributions of continuous-time random walks with superheavy-tailed waiting times

    Full text link
    We study the long-time behavior of the scaled walker (particle) position associated with decoupled continuous-time random walk which is characterized by superheavy-tailed distribution of waiting times and asymmetric heavy-tailed distribution of jump lengths. Both the scaling function and the corresponding limiting probability density are determined for all admissible values of tail indexes describing the jump distribution. To analytically investigate the limiting density function, we derive a number of different representations of this function and, by this way, establish its main properties. We also develop an efficient numerical method for computing the limiting probability density and compare our analytical and numerical results.Comment: 35 pages, 4 figure

    Asymptotic solutions of decoupled continuous-time random walks with superheavy-tailed waiting time and heavy-tailed jump length distributions

    Full text link
    We study the long-time behavior of decoupled continuous-time random walks characterized by superheavy-tailed distributions of waiting times and symmetric heavy-tailed distributions of jump lengths. Our main quantity of interest is the limiting probability density of the position of the walker multiplied by a scaling function of time. We show that the probability density of the scaled walker position converges in the long-time limit to a non-degenerate one only if the scaling function behaves in a certain way. This function as well as the limiting probability density are determined in explicit form. Also, we express the limiting probability density which has heavy tails in terms of the Fox HH-function and find its behavior for small and large distances.Comment: 16 pages, 1 figur
    corecore