31 research outputs found

    A central role for C1q/TNF-related protein 13 (CTRP13) in modulating food intake and body weight.

    Get PDF
    C1q/TNF-related protein 13 (CTRP13), a hormone secreted by adipose tissue (adipokines), helps regulate glucose metabolism in peripheral tissues. We previously reported that CTRP13 expression is increased in obese and hyperphagic leptin-deficient mice, suggesting that it may modulate food intake and body weight. CTRP13 is also expressed in the brain, although its role in modulating whole-body energy balance remains unknown. Here, we show that CTRP13 is a novel anorexigenic factor in the mouse brain. Quantitative PCR demonstrated that food restriction downregulates Ctrp13 expression in mouse hypothalamus, while high-fat feeding upregulates expression. Central administration of recombinant CTRP13 suppressed food intake and reduced body weight in mice. Further, CTRP13 and the orexigenic neuropeptide agouti-related protein (AgRP) reciprocally regulate each other's expression in the hypothalamus: central delivery of CTRP13 suppressed Agrp expression, while delivery of AgRP increased Ctrp13 expression. Food restriction alone reduced Ctrp13 and increased orexigenic neuropeptide gene (Npy and Agrp) expression in the hypothalamus; in contrast, when food restriction was coupled to enhanced physical activity in an activity-based anorexia (ABA) mouse model, hypothalamic expression of both Ctrp13 and Agrp were upregulated. Taken together, these results suggest that CTRP13 and AgRP form a hypothalamic feedback loop to modulate food intake and that this neural circuit may be disrupted in an anorexic-like condition

    Pleiotropic functions of embryonic sonic hedgehog expression link jaw and taste bud amplification with eye loss during cavefish evolution

    Get PDF
    This study addresses the role of sonic hedgehog (shh) in increasing oral-pharyngeal constructive traits (jaws and taste buds) at the expense of eyes in the blind cavefish Astyanax mexicanus. In cavefish embryos, eye primordia degenerate under the influence of hyperactive Shh signaling. In concert, cavefish show amplified jaw size and taste bud numbers as part of a change in feeding behavior. To determine whether pleiotropic effects of hyperactive Shh signaling link these regressive and constructive traits, shh expression was compared during late development of the surface-dwelling (surface fish) and cave-dwelling (cavefish) forms of Astyanax. After an initial expansion along the midline of early embryos, shh was elevated in the oral-pharyngeal region in cavefish and later was confined to taste buds. The results of shh inhibition and overexpression experiments indicate that Shh signaling has an important role in oral and taste bud development. Conditional overexpression of an injected shh transgene at specific times in development showed that taste bud amplification and eye degeneration are sensitive to shh overexpression during the same early developmental period, although taste buds are not formed until much later. Genetic crosses between cavefish and surface fish revealed an inverse relationship between eye size and jaw size/taste bud number, supporting a link between oral-pharyngeal constructive traits and eye degeneration. The results suggest that hyperactive Shh signaling increases oral and taste bud amplification in cavefish at the expense of eyes. Therefore, selection for constructive oral-pharyngeal traits may be responsible for eye loss during cavefish evolution via pleiotropic function of the Shh signaling pathway. © 2009 Elsevier Inc. All rights reserved

    Evolution of the chordate regeneration blastema: Differential gene expression and conserved role of notch signaling during siphon regeneration in the ascidian Ciona

    Get PDF
    AbstractThe regeneration of the oral siphon (OS) and other distal structures in the ascidian Ciona intestinalis occurs by epimorphosis involving the formation of a blastema of proliferating cells. Despite the longstanding use of Ciona as a model in molecular developmental biology, regeneration in this system has not been previously explored by molecular analysis. Here we have employed microarray analysis and quantitative real time RT-PCR to identify genes with differential expression profiles during OS regeneration. The majority of differentially expressed genes were downregulated during OS regeneration, suggesting roles in normal growth and homeostasis. However, a subset of differentially expressed genes was upregulated in the regenerating OS, suggesting functional roles during regeneration. Among the upregulated genes were key members of the Notch signaling pathway, including those encoding the delta and jagged ligands, two fringe modulators, and to a lesser extent the notch receptor. In situ hybridization showed a complementary pattern of delta1 and notch gene expression in the blastema of the regenerating OS. Chemical inhibition of the Notch signaling pathway reduced the levels of cell proliferation in the branchial sac, a stem cell niche that contributes progenitor cells to the regenerating OS, and in the OS regeneration blastema, where siphon muscle fibers eventually re-differentiate. Chemical inhibition also prevented the replacement of oral siphon pigment organs, sensory receptors rimming the entrance of the OS, and siphon muscle fibers, but had no effects on the formation of the wound epidermis. Since Notch signaling is involved in the maintenance of proliferative activity in both the Ciona and vertebrate regeneration blastema, the results suggest a conserved evolutionary role of this signaling pathway in chordate regeneration. The genes identified in this investigation provide the foundation for future molecular analysis of OS regeneration

    Transcriptional profiling and pathway analysis reveal differences in pituitary gland function, morphology, and vascularization in chickens genetically selected for high or low body weight

    Get PDF
    Though intensive genetic selection has led to extraordinary advances in growth rate and feed efficiency in production of meat-type chickens, endocrine processes controlling these traits are still poorly understood. The anterior pituitary gland is a central component of the neuroendocrine system and plays a key role in regulating important physiological processes that directly impact broiler production efficiency, though how differences in pituitary gland function contribute to various growth and body composition phenotypes is not fully understood.https://doi.org/10.1186/s12864-019-5670-

    Stage-specific inhibition of TrkB activity leads to long-lasting and sexually dimorphic effects on body weight and hypothalamic gene expression.

    Get PDF
    During development, prenatal and postnatal factors program homeostatic set points to regulate food intake and body weight in the adult. Combinations of genetic and environmental factors contribute to the development of neural circuitry that regulates whole-body energy homeostasis. Brain-derived neurotrophic factor (Bdnf) and its receptor, Tyrosine kinase receptor B (TrkB), are strong candidates for mediating the reshaping of hypothalamic neural circuitry, given their well-characterized role in the central regulation of feeding and body weight. Here, we employ a chemical-genetic approach using the TrkB(F616A/F616A) knock-in mouse model to define the critical developmental period in which TrkB inhibition contributes to increased adult fat mass. Surprisingly, transient TrkB inhibition in embryos, preweaning pups, and adults all resulted in long-lasting increases in body weight and fat content. Moreover, sex-specific differences in the effects of TrkB inhibition on both body weight and hypothalamic gene expression were observed at multiple developmental stages. Our results highlight both the importance of the Bdnf/TrkB pathway in maintaining normal body weight throughout life and the role of sex-specific differences in the organization of hypothalamic neural circuitry that regulates body weight

    Myonectin (CTRP15), a Novel Myokine That Links Skeletal Muscle to Systemic Lipid Homeostasis

    No full text
    Skeletal muscle plays important roles in whole-body glucose and fatty acid metabolism. However, muscle also secretes cytokines and growth factors (collectively termed myokines) that can potentially act in an autocrine, a paracrine, and/or an endocrine manner to modulate metabolic, inflammatory, and other processes. Here, we report the identification and characterization of myonectin, a novel myokine belonging to the C1q/TNF-related protein (CTRP) family. Myonectin transcript was highly induced in differentiated myotubes and predominantly expressed by skeletal muscle. Circulating levels of myonectin were tightly regulated by the metabolic state; fasting suppressed, but refeeding dramatically increased, its mRNA and serum levels. Although mRNA and circulating levels of myonectin were reduced in a diet-induced obese state, voluntary exercise increased its expression and circulating levels. Accordingly, myonectin transcript was up-regulated by compounds (forskolin, epinephrine, ionomycin) that raise cellular cAMP or calcium levels. In vitro, secreted myonectin forms disulfide-linked oligomers, and when co-expressed, forms heteromeric complexes with other members of the C1q/TNF-related protein family. In mice, recombinant myonectin administration reduced circulating levels of free fatty acids without altering adipose tissue lipolysis. Consistent with this, myonectin promoted fatty acid uptake in cultured adipocytes and hepatocytes, in part by up-regulating the expression of genes (CD36, FATP1, Fabp1, and Fabp4) that promote lipid uptake. Collectively, these results suggest that myonectin links skeletal muscle to lipid homeostasis in liver and adipose tissue in response to alterations in energy state, revealing a novel myonectin-mediated metabolic circuit
    corecore