5 research outputs found

    Thiol-Rich fp‑6 Controls the Tautomer Equilibrium of Oxidized Dopa in Interfacial Mussel Foot Proteins

    No full text
    3,4-Dihydroxyphenylalanine (Dopa) is a versatile molecule that enables marine mussels to achieve successful underwater adhesion. However, due to its complicated redox chemistry and vulnerability to oxidation, controlling surface adhesion and cohesion has been a challenging issue to overcome. Foot protein type 6 (fp-6), a thiol-rich interfacial mussel adhesive protein, has been reported as a proteinaceous antioxidant for mussels that helps Dopa maintain surface adhesion ability. In this study, we focused on the role of fp-6 in oxidized Dopa. The effect on the tautomer equilibrium of oxidized Dopa was investigated using recombinant fp-6 (rfp-6) and Dopa-incorporated foot protein type 3 fast variant (drfp-3F), which were produced in bacterial cells. The redox chemistry of Dopa in drfp-3F and the role of rfp-6 were observed using a UV–vis spectrophotometer and a surface forces apparatus (SFA). We discovered that rfp-6 shifts the tautomer equilibrium to ΔDopa as a preferred tautomer for oxidized Dopa in drfp-3F and makes drfp-3F better on underwater surface adhesion

    Switch of Surface Adhesion to Cohesion by Dopa-Fe<sup>3+</sup> Complexation, in Response to Microenvironment at the Mussel Plaque/Substrate Interface

    No full text
    Although Dopa-Fe<sup>3+</sup> complexation is known to play an important role in mussel adhesion for providing mechanical properties, its function at the plaque/substrate interface, where actual surface adhesion occurs, remains unknown, with regard to interfacial mussel adhesive proteins (MAPs) type 3 fast variant (fp-3F) and type 5 (fp-5). Here, we confirmed Dopa-Fe<sup>3+</sup> complexation of interfacial MAPs and investigated the effects of Dopa-Fe<sup>3+</sup> complexation regarding both surface adhesion and cohesion. The force measurements using surface forces apparatus (SFA) analysis showed that intrinsic strong surface adhesion at low pH, which is similar to the local acidified environment present during the secretion of adhesive proteins, vanishes by Dopa-Fe<sup>3+</sup> complexation and alternatively, strong cohesion is generated in higher pH conditions similar to seawater. A high Dopa content increased the capacity for both surface adhesion and cohesion, but not at the same time. In contrast, a lack of Dopa resulted in both weak surface adhesion and cohesion without significant effects of Fe<sup>3+</sup> complexation. Our findings shed light on how mussels regulate Dopa functionality at the plaque/substrate interface, in response to the microenvironment, and might provide new insight for the design of mussel-inspired biomaterials

    Optimal Sacrificial Domains in Mechanical Polyproteins: S. epidermidis Adhesins Are Tuned for Work Dissipation

    No full text
    The opportunistic pathogen Staphylococcus epidermidis utilizes a multidomain surface adhesin protein to bind host components and adhere to tissues. While it is known that the interaction between the SdrG receptor and its fibrinopeptide target (FgB) is exceptionally mechanostable (∼2 nN), the influence of downstream B domains (B1 and B2) is unclear. Here, we studied the mechanical relationships between folded B domains and the SdrG receptor bound to FgB. We used protein engineering, single-molecule force spectroscopy (SMFS) with an atomic force microscope (AFM), and Monte Carlo simulations to understand how the mechanical properties of folded sacrificial domains, in general, can be optimally tuned to match the stability of a receptor–ligand complex. Analogous to macroscopic suspension systems, sacrificial shock absorber domains should neither be too weak nor too strong to optimally dissipate mechanical energy. We built artificial molecular shock absorber systems based on the nanobody (VHH) scaffold and studied the competition between domain unfolding and receptor unbinding. We quantitatively determined the optimal stability of shock absorbers that maximizes work dissipation on average for a given receptor and found that natural sacrificial domains from pathogenic S. epidermidis and Clostridium perfringens adhesins exhibit stabilities at or near this optimum within a specific range of loading rates. These findings demonstrate how tuning the stability of sacrificial domains in adhesive polyproteins can be used to maximize mechanical work dissipation and serve as an adhesion strategy by bacteria

    Sprayable Adhesive Nanotherapeutics: Mussel-Protein-Based Nanoparticles for Highly Efficient Locoregional Cancer Therapy

    No full text
    Following surgical resection for primary treatment of solid tumors, systemic chemotherapy is commonly used to eliminate residual cancer cells to prevent tumor recurrence. However, its clinical outcome is often limited due to insufficient local accumulation and the systemic toxicity of anticancer drugs. Here, we propose a sprayable adhesive nanoparticle (NP)-based drug delivery system using a bioengineered mussel adhesive protein (MAP) for effective locoregional cancer therapy. The MAP NPs could be administered to target surfaces in a surface-independent manner through a simple and easy spray process by virtue of their unique adhesion ability and sufficient dispersion property. Doxorubicin (DOX)-loaded MAP NPs (MAP@DOX NPs) exhibited efficient cellular uptake, endolysosomal trafficking, and subsequent low pH microenvironment-induced DOX release in cancer cells. The locally sprayed MAP@DOX NPs showed a significant inhibition of tumor growth <i>in vivo</i>, resulting from the prolonged retention of the MAP@DOX NPs on the tumor surface. Thus, this adhesive MAP NP-based spray therapeutic system provides a promising approach for topical drug delivery in adjuvant cancer therapy

    Mapping Mechanostable Pulling Geometries of a Therapeutic Anticalin/CTLA‑4 Protein Complex

    No full text
    We used single-molecule AFM force spectroscopy (AFM-SMFS) in combination with click chemistry to mechanically dissociate anticalin, a non-antibody protein binding scaffold, from its target (CTLA-4), by pulling from eight different anchor residues. We found that pulling on the anticalin from residue 60 or 87 resulted in significantly higher rupture forces and a decrease in koff by 2–3 orders of magnitude over a force range of 50–200 pN. Five of the six internal anchor points gave rise to complexes significantly more stable than N- or C-terminal anchor points, rupturing at up to 250 pN at loading rates of 0.1–10 nN s–1. Anisotropic network modeling and molecular dynamics simulations helped to explain the geometric dependency of mechanostability. These results demonstrate that optimization of attachment residue position on therapeutic binding scaffolds can provide large improvements in binding strength, allowing for mechanical affinity maturation under shear stress without mutation of binding interface residues
    corecore