1,957 research outputs found

    Just How Final are Today's Quantum Structures?

    Get PDF
    I present a selection of conceptual and mathematical problems in the foundations of modern physics as they derive from the title question. Contribution to a panel session, "Springer Forum: Quantum Structures -- Physical, Mathematical and Epistemological Problems", held at the Biannual Symposium of the International Quantum Structures Association, Liptovsky Jan, September 1998. To appear in journal: Soft Computing (2001).Comment: 3 pages, tcilate

    Complementarity and uncertainty in Mach-Zehnder interferometry and beyond

    Get PDF
    A coherent account of the connections and contrasts between the principles of complementarity and uncertainty is developed starting from a survey of the various formalizations of these principles. The conceptual analysis is illustrated by means of a set of experimental schemes based on Mach-Zehnder interferometry. In particular, path detection via entanglement with a probe system and (quantitative) quantum erasure are exhibited to constitute instances of joint unsharp, measurements of complementary pairs of physical quantities, path and interference observables. The analysis uses the representation of observables as positive-operator-valued measures (POVMs). The reconciliation of complementary experimental options in the sense of simultaneous unsharp preparations and measurements is expressed in terms of uncertainty relations of different kinds. The feature of complementarity, manifest in the present examples in the mutual exclusivity of path detection and interference observation, is recovered as a limit case from the appropriate uncertainty relation. It is noted that the complementarity and uncertainty principles are neither completely logically independent nor logical consequences of one another. Since entanglement is an instance of the uncertainty of quantum properties (of compound systems), it is moot to play out uncertainty and entanglement against each other as possible mechanisms enforcing complementarity. (c) 2006 Published by Elsevier B.V

    Heisenberg's uncertainty principle

    Get PDF
    Heisenberg's uncertainty principle is usually taken to express a limitation of operational possibilities imposed by quantum mechanics. Here we demonstrate that the full content of this principle also includes its positive role as a condition ensuring that mutually exclusive experimental options can be reconciled if an appropriate trade-off is accepted. The uncertainty principle is shown to appear in three manifestations, in the form of uncertainty relations: for the widths of the position and momentum distributions in any quantum state; for the inaccuracies of any joint measurement of these quantities; and for the inaccuracy of a measurement of one of the quantities and the ensuing disturbance in the distribution of the other quantity. Whilst conceptually distinct, these three kinds of uncertainty relations are shown to be closely related formally. Finally, we survey models and experimental implementations of joint measurements of position and momentum and comment briefly on the status of experimental tests of the uncertainty principle. (c) 2007 Elsevier B.V. All rights reserved