9,791 research outputs found
Recommended from our members
Writing While Black: The Black Tax on African American Graduate Writers
In Souls of Black Folk, W. E. B. Du Bois states that African American identity contains a “double consciousness” of being both black and American (45). According to Du Bois, African Americans are constantly aware of their dual identities because their existence is a constant struggle to reconcile those two selves in a society that scorns them. As Du Bois writes, “He simply wishes to make it possible for a man to be both a Negro and an American, without being cursed and spit upon by his fellows, without having the doors of Opportunity closed roughly in his face” (46). As a result, African Americans have to see themselves in relation to how white Americans view them, while struggling to encounter a world that they anticipate will eventually—and hopefully—view them without contempt.University Writing Cente
Insulating structure Patent
Insulating system for receptacles of liquefied gases using wire cloth for forming frost laye
Design reliability goal developed from small sample
Sampling distributions, constructed by Monte Carlo simulation are used in hardware development to establish a design reliability goal, to place a confidence coefficient on reliability estimates, and to determine whether sample stress/strength data demonstrate a specified reliability at a specified confidence level
Results From Core-Collapse Simulations with Multi-Dimensional, Multi-Angle Neutrino Transport
We present new results from the only 2D multi-group, multi-angle calculations
of core-collapse supernova evolution. The first set of results from these
calculations was published in Ott et al. (2008). We have followed a nonrotating
and a rapidly rotating 20 solar mass model for ~400 ms after bounce. We show
that the radiation fields vary much less with angle than the matter quantities
in the region of net neutrino heating. This obtains because most neutrinos are
emitted from inner radiative regions and because the specific intensity is an
integral over sources from many angles at depth. The latter effect can only be
captured by multi-angle transport. We then compute the phase relationship
between dipolar oscillations in the shock radius and in matter and radiation
quantities throughout the postshock region. We demonstrate a connection between
variations in neutrino flux and the hydrodynamical shock oscillations, and use
a variant of the Rayleigh test to estimate the detectability of these neutrino
fluctuations in IceCube and Super-K. Neglecting flavor oscillations,
fluctuations in our nonrotating model would be detectable to ~10 kpc in
IceCube, and a detailed power spectrum could be measured out to ~5 kpc. These
distances are considerably lower in our rapidly rotating model or with
significant flavor oscillations. Finally, we measure the impact of rapid
rotation on detectable neutrino signals. Our rapidly rotating model has strong,
species-dependent asymmetries in both its peak neutrino flux and its light
curves. The peak flux and decline rate show pole-equator ratios of up to ~3 and
~2, respectively.Comment: 13 pages, 9 figures, ApJ accepted. Replaced with accepted versio
GRB Energetics in the Swift Era
We examine the rest frame energetics of 76 gamma-ray bursts (GRBs) with known
redshift that were detected by the Swift spacecraft and monitored by the
satellite's X-ray Telescope (XRT). Using the bolometric fluence values
estimated in Butler et al. 2007b and the last XRT observation for each event,
we set a lower limit the their collimation corrected energy Eg and find that a
68% of our sample are at high enough redshift and/or low enough fluence to
accommodate a jet break occurring beyond the last XRT observation and still be
consistent with the pre-Swift Eg distribution for long GRBs. We find that
relatively few of the X-ray light curves for the remaining events show evidence
for late-time decay slopes that are consistent with that expected from post jet
break emission. The breaks in the X-ray light curves that do exist tend to be
shallower and occur earlier than the breaks previously observed in optical
light curves, yielding a Eg distribution that is far lower than the pre-Swift
distribution. If these early X-ray breaks are not due to jet effects, then a
small but significant fraction of our sample have lower limits to their
collimation corrected energy that place them well above the pre-Swift Eg
distribution. Either scenario would necessitate a much wider post-Swift Eg
distribution for long cosmological GRBs compared to the narrow standard energy
deduced from pre-Swift observations. We note that almost all of the pre-Swift
Eg estimates come from jet breaks detected in the optical whereas our sample is
limited entirely to X-ray wavelengths, furthering the suggestion that the
assumed achromaticity of jet breaks may not extend to high energies.Comment: 30 pages, 10 figures, Accepted to Ap
Strong Water Absorption in the Dayside Emission Spectrum of the Planet HD 189733b
Recent observations of the extrasolar planet HD 189733b did not reveal the
presence of water in the emission spectrum of the planet. Yet models of such
'Hot Jupiter' planets predict an abundance of atmospheric water vapour.
Validating and constraining these models is crucial for understanding the
physics and chemistry of planetary atmospheres in extreme environments.
Indications of the presence of water in the atmosphere of HD 189733b have
recently been found in transmission spectra, where the planet's atmosphere
selectively absorbs the light of the parent star, and in broadband photometry.
Here we report on the detection of strong water absorption in a high
signal-to-noise, mid-infrared emission spectrum of the planet itself. We find
both a strong downturn in the flux ratio below 10 microns and discrete spectral
features that are characteristic of strong absorption by water vapour. The
differences between these and previous observations are significant and admit
the possibility that predicted planetary-scale dynamical weather structures
might alter the emission spectrum over time. Models that match the observed
spectrum and the broadband photometry suggest that heat distribution from the
dayside to the night side is weak. Reconciling this with the high night side
temperature will require a better understanding of atmospheric circulation or
possible additional energy sources.Comment: 11 pages, 1 figure, published in Natur
Multi-Dimensional Explorations in Supernova Theory
In this paper, we bring together various of our published and unpublished
findings from our recent 2D multi-group, flux-limited radiation hydrodynamic
simulations of the collapse and explosion of the cores of massive stars. Aided
by 2D and 3D graphical renditions, we motivate the acoustic mechanism of
core-collapse supernova explosions and explain, as best we currently can, the
phases and phenomena that attend this mechanism. Two major foci of our
presentation are the outer shock instability and the inner core g-mode
oscillations. The former sets the stage for the latter, which damp by the
generation of sound. This sound propagates outward to energize the explosion
and is relevant only if the core has not exploded earlier by some other means.
Hence, it is a more delayed mechanism than the traditional neutrino mechanism
that has been studied for the last twenty years since it was championed by
Bethe and Wilson. We discuss protoneutron star convection,
accretion-induced-collapse, gravitational wave emissions, pulsar kicks, the
angular anisotropy of the neutrino emissions, a subset of numerical issues, and
a new code we are designing that should supercede our current supernova code
VULCAN/2D. Whatever ideas last from this current generation of numerical
results, and whatever the eventual mechanism(s), we conclude that the breaking
of spherical symmetry will survive as one of the crucial keys to the supernova
puzzle.Comment: To be published in the "Centennial Festschrift for Hans Bethe,"
Physics Reports (Elsevier: Holland), ed. G.E. Brown, E. van den Heuvel, and
V. Kalogera, 200
Epitaxial growth and surface reconstruction of CrSb(0001)
Smooth CrSb(0001) films have been grown by molecular beam epitaxy on MnSb(0001) – GaAs(111) substrates. CrSb(0001) shows (2 × 2), triple domain (1 × 4) and (√3×√3)R30° reconstructed surfaces as well as a (1 × 1) phase. The dependence of reconstruction on substrate temperature and incident fluxes is very similar to MnSb(0001)
Science Fictioning Singularities: The Diagrammatic Imaginaries of Physics
Data Loam focuses on the future of knowledge systems in texts about artificial intelligence, cybernetics, and cryptoeconomics – as a means of counteracting end-of-the-world fears
- …