2,725 research outputs found
Short-Term Operations Support Farm Continuity in Times of Distress
Sometimes there are short-term scenarios when farm managers or key personnel are away from the farm because of personal matters, sickness, vacation, or unexpectedly passing away.
Even if there is a long-term plan is to transfer the farm, there are likely day-to-day activities necessary to keep the farm running.
This article and listed resources are aimed at combatting this scenario. The main goal is that were something to occur; the farm can handle the interruption as smoothly and efficiently as possible
Revisiting a Water Conflict in Southeastern Oklahoma 6 Years Later: A New Valuation of the Willingness to Pay for Ecosystem Services
In recent years, researchers have begun to adopt a perspective evaluating “winners and losers” regarding the consumption and value of ecosystem services. “Winners” tend to benefit from the ecosystem service and “losers” absorb most associated costs. Our study focuses on water use in Oklahoma (USA) and a plan to divert water from the Kiamichi River in southeastern Oklahoma for consumption at residences in the Oklahoma City metropolitan area. Our study is, in part, a follow-up from an initial 2013 survey of Oklahoma City residents and residents of the Kiamichi. For this paper, a survey was distributed within the state of Oklahoma to evaluate changes to ecosystem service willingness to pay and valuation. This survey also included an experimental element assessing if exposure to additional information about ecosystem services influenced respondents on ecosystem service valuation, or willingness to pay. Our results generally aligned with those found in the 2013 survey. Oklahoma City residents are not aware of where their water is coming from and are not willing to pay to protect ecosystem services, despite an overall increase in activism. Our results indicate that a smaller number of significant factors determining willingness to pay for ecosystem service maintenance were identified than the study in 2013. Exposure to additional information had no effect on peoples’ preferences. We found that public opinion surrounding environmental support is context-specific, political conservatism may not always impede valuation of environmental protections. We conclude that cultural, moral, and political values interact in their influence on expressions of valuation and willingness to pay for ecosystem services.This manuscript was supported by funding from the US National Science Foundation (NSF DGE-1545261).
Open Access fees paid for in whole or in part by the University of Oklahoma Libraries.Ye
IL-15 trans-presentation by pulmonary dendritic cells promotes effector CD8 T cell survival during influenza virus infection
We have recently demonstrated that peripheral CD8 T cells require two separate activation hits to accumulate to high numbers in the lungs after influenza virus infection: a primary interaction with mature, antigen-bearing dendritic cells (DCs) in the lymph node, and a second, previously unrecognized interaction with MHC I–viral antigen–bearing pulmonary DCs in the lungs. We demonstrate that in the absence of lung-resident DC subsets, virus-specific CD8 T cells undergo significantly increased levels of apoptosis in the lungs; however, reconstitution with pulmonary plasmacytoid DCs and CD8α+ DCs promotes increased T cell survival and accumulation in the lungs. Further, our results show that the absence of DCs after influenza virus infection results in significantly reduced levels of IL-15 in the lungs and that pulmonary DC–mediated rescue of virus-specific CD8 T cell responses in the lungs requires trans-presentation of IL-15 via DC-expressed IL-15Rα. This study demonstrates a key, novel requirement for DC trans-presented IL-15 in promoting effector CD8 T cell survival in the respiratory tract after virus infection, and suggests that this trans-presentation could be an important target for the development of unique antiviral therapies and more effective vaccine strategies
Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits
Scalable quantum computing can become a reality with error correction,
provided coherent qubits can be constructed in large arrays. The key premise is
that physical errors can remain both small and sufficiently uncorrelated as
devices scale, so that logical error rates can be exponentially suppressed.
However, energetic impacts from cosmic rays and latent radioactivity violate
both of these assumptions. An impinging particle ionizes the substrate,
radiating high energy phonons that induce a burst of quasiparticles, destroying
qubit coherence throughout the device. High-energy radiation has been
identified as a source of error in pilot superconducting quantum devices, but
lacking a measurement technique able to resolve a single event in detail, the
effect on large scale algorithms and error correction in particular remains an
open question. Elucidating the physics involved requires operating large
numbers of qubits at the same rapid timescales as in error correction, exposing
the event's evolution in time and spread in space. Here, we directly observe
high-energy rays impacting a large-scale quantum processor. We introduce a
rapid space and time-multiplexed measurement method and identify large bursts
of quasiparticles that simultaneously and severely limit the energy coherence
of all qubits, causing chip-wide failure. We track the events from their
initial localised impact to high error rates across the chip. Our results
provide direct insights into the scale and dynamics of these damaging error
bursts in large-scale devices, and highlight the necessity of mitigation to
enable quantum computing to scale
Readout of a quantum processor with high dynamic range Josephson parametric amplifiers
We demonstrate a high dynamic range Josephson parametric amplifier (JPA) in
which the active nonlinear element is implemented using an array of rf-SQUIDs.
The device is matched to the 50 environment with a Klopfenstein-taper
impedance transformer and achieves a bandwidth of 250-300 MHz, with input
saturation powers up to -95 dBm at 20 dB gain. A 54-qubit Sycamore processor
was used to benchmark these devices, providing a calibration for readout power,
an estimate of amplifier added noise, and a platform for comparison against
standard impedance matched parametric amplifiers with a single dc-SQUID. We
find that the high power rf-SQUID array design has no adverse effect on system
noise, readout fidelity, or qubit dephasing, and we estimate an upper bound on
amplifier added noise at 1.6 times the quantum limit. Lastly, amplifiers with
this design show no degradation in readout fidelity due to gain compression,
which can occur in multi-tone multiplexed readout with traditional JPAs.Comment: 9 pages, 8 figure
Tracker Operation and Performance at the Magnet Test and Cosmic Challenge
During summer 2006 a fraction of the CMS silicon strip tracker was operated in a comprehensive slice test called the Magnet Test and Cosmic Challenge (MTCC). At the MTCC, cosmic rays detected in the muon chambers were used to trigger the readout of all CMS sub-detectors in the general data acquisition system and in the presence of the 4 T magnetic field produced by the CMS superconducting solenoid. This document describes the operation of the Tracker hardware and software prior, during and after data taking. The performance of the detector as resulting from the MTCC data analysis is also presented
Measurement-Induced State Transitions in a Superconducting Qubit: Within the Rotating Wave Approximation
Superconducting qubits typically use a dispersive readout scheme, where a
resonator is coupled to a qubit such that its frequency is qubit-state
dependent. Measurement is performed by driving the resonator, where the
transmitted resonator field yields information about the resonator frequency
and thus the qubit state. Ideally, we could use arbitrarily strong resonator
drives to achieve a target signal-to-noise ratio in the shortest possible time.
However, experiments have shown that when the average resonator photon number
exceeds a certain threshold, the qubit is excited out of its computational
subspace, which we refer to as a measurement-induced state transition. These
transitions degrade readout fidelity, and constitute leakage which precludes
further operation of the qubit in, for example, error correction. Here we study
these transitions using a transmon qubit by experimentally measuring their
dependence on qubit frequency, average photon number, and qubit state, in the
regime where the resonator frequency is lower than the qubit frequency. We
observe signatures of resonant transitions between levels in the coupled
qubit-resonator system that exhibit noisy behavior when measured repeatedly in
time. We provide a semi-classical model of these transitions based on the
rotating wave approximation and use it to predict the onset of state
transitions in our experiments. Our results suggest the transmon is excited to
levels near the top of its cosine potential following a state transition, where
the charge dispersion of higher transmon levels explains the observed noisy
behavior of state transitions. Moreover, occupation in these higher energy
levels poses a major challenge for fast qubit reset
- …