6,674 research outputs found

    Experimental analysis of decoherence of quantumness in a continuous variables bi-partite entangled system

    Full text link
    Quantum properties are soon subject to decoherence once the quantum system interacts with the classical environment. In this paper we experimentally test how propagation losses, in a Gaussian channel, affect the bi-partite Gaussian entangled state generated by a sub-threshold type-II optical parametric oscillator (OPO). Experimental results are discussed in terms of different quantum markers, as teleportation fidelity, quantum discord and mutual information, and continuous variables (CV) entanglement criteria. To analyse state properties we have retrieved the composite system covariance matrix by a single homodyne detector. We experimentally found that, even in presence of a strong decoherence, the generated state never disentangles and keeps breaking the quantum limit for the discord. This result proves that the class of CV entangled states discussed in this paper would allow, in principle, to realize quantum teleportation over an infinitely long Gaussian channel.Comment: 17 pages, one column, revtex, 8 figures to appear on Phys. Rev.

    On finite-size effects in computer simulations using the Ewald potential

    Full text link
    We discuss the origin and relevance for computer simulations of a strong finite-size effect that appears when using the Ewald summation formula. It can be understood as arising from a volume-dependent shift of the potential in a finite, periodic box relative to the infinite volume limit. This shift is due to the fact that the ``zero of energy'' for a periodic system cannot be defined by letting the interacting particles be separated by an infinite distance; the correct definition corresponds to setting its \bbox k=\bbox 0 Fourier mode to zero. The implications of this effect for computer simulations are discussed.Comment: Submitted to Journal of Chemical Physic

    Analysis of high load dampers

    Get PDF
    High load damping requirements for modern jet engines are discussed. The design of damping systems which could satisfy these requirements is also discusseed. In order to evaluate high load damping requirements, engines in three major classes were studied; large transport engines, small general aviation engines, and military engines. Four damper concepts applicable to these engines were evaluated; multi-ring, cartridge, curved beam, and viscous/friction. The most promising damper concept was selected for each engine and performance was assessed relative to conventional dampers and in light of projected damping requirements for advanced jet engines

    Tunable non-Gaussian resources for continuous-variable quantum technologies

    Full text link
    We introduce and discuss a set of tunable two-mode states of continuous-variable systems, as well as an efficient scheme for their experimental generation. This novel class of tunable entangled resources is defined by a general ansatz depending on two experimentally adjustable parameters. It is very ample and flexible as it encompasses Gaussian as well as non-Gaussian states. The latter include, among others, known states such as squeezed number states and de-Gaussified photon-added and photon-subtracted squeezed states, the latter being the most efficient non-Gaussian resources currently available in the laboratory. Moreover, it contains the classes of squeezed Bell states and even more general non-Gaussian resources that can be optimized according to the specific quantum technological task that needs to be realized. The proposed experimental scheme exploits linear optical operations and photon detections performed on a pair of uncorrelated two--mode Gaussian squeezed states. The desired non-Gaussian state is then realized via ancillary squeezing and conditioning. Two independent, freely tunable experimental parameters can be exploited to generate different states and to optimize the performance in implementing a given quantum protocol. As a concrete instance, we analyze in detail the performance of different states considered as resources for the realization of quantum teleportation in realistic conditions. For the fidelity of teleportation of an unknown coherent state, we show that the resources associated to the optimized parameters outperform, in a significant range of experimental values, both Gaussian twin beams and photon-subtracted squeezed states.Comment: 13 pages, 7 figure

    Experimental pre-assessing entanglement in Gaussian states mixing

    Full text link
    We suggest and demonstrate a method to assess entanglement generation schemes based on mixing of Gaussian states at a beam splitter (BS). Our method is based on the fidelity criterion and represents a tool to analyze the effect of losses and noise before the BS in both symmetric and asymmetric channels with and without thermal effects. More generally, our scheme allows one to pre-assess entanglement resources and to optimize the design of BS-based schemes for the generation of continuous variable entanglement.Comment: 10 pages, 15 figure

    On the zero set of G-equivariant maps

    Full text link
    Let GG be a finite group acting on vector spaces VV and WW and consider a smooth GG-equivariant mapping f:VWf:V\to W. This paper addresses the question of the zero set near a zero xx of ff with isotropy subgroup GG. It is known from results of Bierstone and Field on GG-transversality theory that the zero set in a neighborhood of xx is a stratified set. The purpose of this paper is to partially determine the structure of the stratified set near xx using only information from the representations VV and WW. We define an index s(Σ)s(\Sigma) for isotropy subgroups Σ\Sigma of GG which is the difference of the dimension of the fixed point subspace of Σ\Sigma in VV and WW. Our main result states that if VV contains a subspace GG-isomorphic to WW, then for every maximal isotropy subgroup Σ\Sigma satisfying s(Σ)>s(G)s(\Sigma)>s(G), the zero set of ff near xx contains a smooth manifold of zeros with isotropy subgroup Σ\Sigma of dimension s(Σ)s(\Sigma). We also present a systematic method to study the zero sets for group representations VV and WW which do not satisfy the conditions of our main theorem. The paper contains many examples and raises several questions concerning the computation of zero sets of equivariant maps. These results have application to the bifurcation theory of GG-reversible equivariant vector fields

    Personality factors and acceptability of socially assistive robotics in teachers with and without specialized training for children with disability

    Get PDF
    Personality factors can be predictors of acceptability and intention to use new technologies, especially regarding education and care fields in the whole lifespan. The aim of this study was to evaluate the predictive factors and attitudes of curricular and specialized teachers towards socially assistive robotics and the intention to use robots in teaching activities. In our research, we investigated the impact of the personality factors measured with the Big Five Questionnaire, on acceptability questionnaires derived by Eurobarometer and by the model Unified Theory of the Acceptance and Use of Technology (UTAUT), administered respectively before and after showing the possible uses of the robot NAO in education and teaching. The study was conducted in four schools, participants were 114 teachers (52.07 ± 8.22), aged 26 to 68 years, of the primary and middle school level. The results highlight the primary role of the personality factors Openness to Experience and Extraversion for promoting the acceptability and reduce the prejudicial reject regarding the use of educational and assistive robotic technologies. In conclusion, for using at best robotics in education, teachers need to receive appropriate training - also on the basis of their attitudes and personality traits - to learn how to plan their educational activities integrating the robotics tool
    corecore