158 research outputs found
Gab Adapter Proteins as Therapeutic Targets for Hematologic Disease
The Grb-2 associated binder (Gab) family of scaffolding/adaptor/docking proteins is a group of three molecules with significant roles in cytokine receptor signaling. Gabs possess structural motifs for phosphorylation-dependent receptor recruitment, Grb2 binding, and activation of downstream signaling pathways through p85 and SHP-2. In addition, Gabs participate in hematopoiesis and regulation of immune response which can be aberrantly activated in cancer and inflammation. The multifunctionality of Gab adapters might suggest that they would be too difficult to consider as candidates for “targeted” therapy. However, the one drug/one target approach is giving way to the concept of one drug/multiple target approach since few cancers are addicted to a single signaling molecule for survival and combination drug therapies can be problematic. In this paper, we cover recent findings on Gab multi-functionality, binding partners, and their role in hematological malignancy and examine the concept of Gab-targeted therapy
Imipramine blue sensitively and selectively targets FLT3-ITD positive acute myeloid leukemia cells.
Aberrant cytokine signaling initiated from mutant receptor tyrosine kinases (RTKs) provides critical growth and survival signals in high risk acute myeloid leukemia (AML). Inhibitors to FLT3 have already been tested in clinical trials, however, drug resistance limits clinical efficacy. Mutant receptor tyrosine kinases are mislocalized in the endoplasmic reticulum (ER) of AML and play an important role in the non-canonical activation of signal transducer and activator of transcription 5 (STAT5). Here, we have tested a potent new drug called imipramine blue (IB), which is a chimeric molecule with a dual mechanism of action. At 200-300 nM concentrations, IB is a potent inhibitor of STAT5 through liberation of endogenous phosphatase activity following NADPH oxidase (NOX) inhibition. However, at 75-150 nM concentrations, IB was highly effective at killing mutant FLT3-driven AML cells through a similar mechanism as thapsigargin (TG), involving increased cytosolic calcium. IB also potently inhibited survival of primary human FLT3/ITD+ AML cells compared to FLT3/ITDneg cells and spared normal umbilical cord blood cells. Therefore, IB functions through a mechanism involving vulnerability to dysregulated calcium metabolism and the combination of fusing a lipophilic amine to a NOX inhibiting dye shows promise for further pre-clinical development for targeting high risk AML
Walkable Neighborhoods: Linkages Between Place, Health, and Happiness in Younger and Older Adults
Problem, research strategy, and findings: We examined whether living in a walkable neighborhood influenced the happiness of younger and older city residents. The data for this study came from a comprehensive household population survey of 1,064 adults living in 16 neighborhoods in Dublin City (Ireland) and its suburbs. We used multigroup structural equation modeling to analyze the direct and indirect effects of walkability on happiness, mediated by health, trust, and satisfaction with neighborhood appearance. We found living in a walkable neighborhood was directly linked to the happiness of people aged 36 to 45 (p¼.001) and, to a lesser extent, those aged 18 to 35 (p¼.07). For older adults, we found that walkable places mattered for happiness indirectly. Such built environments enhanced the likelihood that residents felt more healthy and more trusting of others, and this in turn affected the happiness of older people living in walkable neighborhoods.
Takeaway for practice: We found that the way neighborhoods are planned and maintained mattered for happiness, health, and trust. Our findings suggest that mixed-use neighborhood designs that enable residents to shop and socialize within walking distance to their homes have direct and indirect effects on happiness. We call for an ongoing dialogue and evaluation of the way our urban and suburban neighborhoods are planned, designed, and developed, so that people can live in walkable places that better enable health and wellbeing
Gab2 Promotes Hematopoietic Stem Cell Maintenance and Self-Renewal Synergistically with STAT5
Grb2-associated binding (Gab) adapter proteins play major roles in coordinating signaling downstream of hematopoietic cytokine receptors. In hematopoietic cells, Gab2 can modulate phosphatidylinositol–3 kinase and mitogen associated protein kinase activities and regulate the long-term multilineage competitive repopulating activity of hematopoietic stem cells (HSCs). Gab2 may also act in a linear pathway upstream or downstream of signal transducer and activator of transcription-5 (STAT5), a major positive regulator of HSC function. Therefore, we aimed to determine whether Gab2 and STAT5 function in hematopoiesis in a redundant or non-redundant manner.), reduced HSC survival, and dramatic loss of self-renewal potential as measured by serial transplantation.These data demonstrate new functions for Gab2 in hematopoiesis in a manner that is non-redundant with STAT5. Furthermore, important synergy between STAT5 and Gab2 was observed in HSC self-renewal, which might be exploited to optimize stem cell-based therapeutics
Cutting Edge: IL-5 Primes Th2 Cytokine-Producing Capacity in Eosinophils through a STAT5-Dependent Mechanism
Abstract
Both type-2 CD4+ Th cells (CD4+Th2) and type-2 innate effector cells play critical roles in generating type-2 immunity that can either be protective against parasitic infection or cause tissue damage in allergy and asthma. How innate effector cells acquire the capacity to produce Th2 cytokines is not entirely known. We previously showed that IL-4 induced differentiation of Th2 cytokine-producing eosinophils. To determine whether other Th2 cytokines can also induce Th2 cytokine-producing capacity in innate effector cells, we cultured bone marrow progenitor cells in the presence of various Th2 cytokines. IL-5, but not IL-13 or IL-25, primed bone marrow progenitor cells to differentiate into robust IL-4-producing cells. The majority of IL-4-producing cells induced by IL-5 were eosinophils. Importantly, IL-5 completely depended on STAT5 to promote IL-4-producing capacity in eosinophils. Thus, our study demonstrates that IL-5 functions as a potent factor that drives bone marrow progenitor cells into IL-4-producing eosinophils
Inhibition of the Gab2/PI3K/mTOR signaling ameliorates myeloid malignancy caused by Ptpn11 (Shp2) gain-of-function mutations
Activating mutations, such as E76K and D61Y, in PTPN11 (SHP2), a protein tyrosine phosphatase implicated in multiple cell signaling processes, are associated with 35% of patients with juvenile myelomonocytic leukemia (JMML), an aggressive childhood myeloproliferative neoplasm (MPN). Here we show that the interaction between leukemia-associated mutant Shp2 and Gab2, a scaffolding protein important for cytokine-induced PI3K/Akt signaling, was enhanced, and that the mTOR pathway was elevated in Ptpn11E76K/+ leukemic cells. Importantly, MPN induced by the Ptpn11E76K/+ mutation was markedly attenuated in Ptpn11E76K/+/Gab2-/- double mutant mice-overproduction of myeloid cells was alleviated, splenomegaly was diminished and myeloid cell infiltration in nonhematopoietic organs was decreased in these double mutants. Excessive myeloid differentiation of stem cells was also normalized by depletion of Gab2. Acute leukemia progression of MPN was reduced in the double mutant mice and, as such, their survival was much prolonged. Furthermore, treatment of Ptpn11E76K/+ mice with Rapamycin, a specific and potent mTOR inhibitor, mitigated MPN phenotypes. Collectively, this study reveals an important role of the Gab2/PI3K/mTOR pathway in mediating the pathogenic signaling of the PTPN11 gain-of-function mutations and a therapeutic potential of Rapamycin for PTPN11 mutation-associated JMML
Recommended from our members
Psoriasis-associated variant Act1 D10N with impaired regulation by Hsp90
Act1 is an essential adaptor molecule in IL-17-mediated signaling and is recruited to the IL-17 receptor upon IL-17 stimulation. Here, we report that Act1 is a client protein of the molecular chaperone, Hsp90. The Act1 variant (D10N) linked to psoriasis susceptibility is defective in its interaction with Hsp90, resulting in a global loss of Act1 function. Act1-/- mice modeled the mechanistic link between Act1 loss of function and psoriasis susceptibility. Although Act1 is necessary for IL-17-mediated inflammation, Act1-/- mice exhibited a hyper TH17 response and developed spontaneous IL-22-dependent skin inflammation. In the absence of IL-17-signaling, IL-22 is the main contributor to skin inflammation, providing a molecular mechanism for the association of Act1 (D10N) with psoriasis susceptibility
Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3 and KIT driven Leukemogenesis
Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPN) and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK), whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis
Gab2 and Gab3 Redundantly Suppress Colitis by Modulating Macrophage and CD8+ T-Cell Activation
Inflammatory Bowel Disease (IBD) is a multi-factorial chronic inflammation of the gastrointestinal tract prognostically linked to CD8+ T-cells, but little is known about their mechanism of activation during initiation of colitis. Here, Grb2-associated binding 2/3 adaptor protein double knockout mice (Gab2/3−/−) were generated. Gab2/3−/− mice, but not single knockout mice, developed spontaneous colitis. To analyze the cellular mechanism, reciprocal bone marrow (BM) transplantation demonstrated a Gab2/3−/− hematopoietic disease-initiating process. Adoptive transfer showed individual roles for macrophages and T-cells in promoting colitis development in vivo. In spontaneous disease, intestinal intraepithelial CD8+ but much fewer CD4+, T-cells from Gab2/3−/− mice with rectal prolapse were more proliferative. To analyze the molecular mechanism, reduced PI3-kinase/Akt/mTORC1 was observed in macrophages and T-cells, with interleukin (IL)-2 stimulated T-cells showing increased pSTAT5. These results illustrate the importance of Gab2/3 collectively in signaling responses required to control macrophage and CD8+ T-cell activation and suppress chronic colitis
- …