6,269 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationThe U.S. finishes in the bottom fifth of industrialized nations in math achievement, based on the Program for International Student Assessment (PISA) scores. The National Assessment of Educational Progress (NAEP) classifies almost 10% of U.S. students as low achieving, and students with disabilities score particularly poorly on such assessments. Experts describe U.S. students as lacking conceptual understanding and requiring remedial instruction in math. When implemented across multiple grade and ability levels, math instruction incorporating a concrete-representational-abstract (CRA) sequence has increased math achievement. Writing To Learn Math (WTLM) is a strategy proven through research to improve students’ conceptual understanding through writing. CRA and WTLM have similar cognitive foundations, yet no studies have evaluated a combination of CRA and WTLM. Combining CRA and WTLM has the potential to address the challenges of adjusting to the national Common Core standards and assessments, which include improving conceptual understanding and writing across all content areas. This unique combination of interventions could offer promising results for effective curriculum development and remedial instruction. This study included three ninth-grade students from a suburban school who are below state proficiency levels in math, and employed a single-subject across-participants design to investigate the following research questions: (1) What is the effect of implementing a concrete-representational-abstract (CRA) instructional sequence incorporating writing to learn math strategies on students with disabilities’ proficiency in solving rate of change problems, and (2) Do students with disabilities find WTLM math and a CRA instructional sequence to be socially acceptable? Results indicated that the CRA + Writing intervention may be effective in improving students’ with disabilities understanding of rate of change. All 3 students improved their scores on the math items of the rate of change probes, and maintained these improvements on maintenance assessments administered between 1 and 7 weeks following the completion of the intervention. Two of the 3 students also displayed moderate improvements in their scores on the writing items of the rate of change probes. The findings of this study provide multiple implications for both research and practice, as well as several directions for future research

    Run 2 Upgrades to the CMS Level-1 Calorimeter Trigger

    Get PDF
    The CMS Level-1 calorimeter trigger is being upgraded in two stages to maintain performance as the LHC increases pile-up and instantaneous luminosity in its second run. In the first stage, improved algorithms including event-by-event pile-up corrections are used. New algorithms for heavy ion running have also been developed. In the second stage, higher granularity inputs and a time-multiplexed approach allow for improved position and energy resolution. Data processing in both stages of the upgrade is performed with new, Xilinx Virtex-7 based AMC cards.Comment: 10 pages, 7 figure

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry

    Triggering on electrons, jets and tau leptons with the CMS upgraded calorimeter trigger for the LHC RUN II

    Get PDF
    The Compact Muon Solenoid (CMS) experiment has implemented a sophisticated two-level online selection system that achieves a rejection factor of nearly 10e5. During Run II, the LHC will increase its centre-of-mass energy up to 13 TeV and progressively reach an instantaneous luminosity of 2e34cm-2s-1. In order to guarantee a successful and ambitious physics programme under this intense environment, the CMS Trigger and Data acquisition (DAQ) system has been upgraded. A novel concept for the L1 calorimeter trigger is introduced the Time Multiplexed Trigger (TMT). In this design, nine main receive each all of the calorimeter data from an entire event provided by 18 preprocessors. This design is not different from that of the CMS DAQ and HLT systems. The advantage of the TMT architecture is that a global view and full granularity of the calorimeters can be exploited by sophisticated algortihms. The goal is to maintain the current thresholds for calorimeter objects and improve the performance for their selection. The performance of these algorithms will be demonstrated, both in terms of efficiency and rate reduction. The callenging aspects of the pile-up mitigation and firmware design will be presented

    Measurement of the top pair production cross section in 8 TeV proton-proton collisions using kinematic information in the lepton plus jets final state with ATLAS

    Get PDF
    A measurement is presented of the ttˉt\bar{t} inclusive production cross-section in pppp collisions at a center-of-mass energy of s=8\sqrt{s}=8 TeV using data collected by the ATLAS detector at the CERN Large Hadron Collider. The measurement was performed in the lepton+jets final state using a data set corresponding to an integrated luminosity of 20.3 fb1^{-1}. The cross-section was obtained using a likelihood discriminant fit and bb-jet identification was used to improve the signal-to-background ratio. The inclusive ttˉt\bar{t} production cross-section was measured to be 260±1(stat.)23+22(syst.)±8(lumi.)±4(beam)260\pm 1{\textrm{(stat.)}} ^{+22}_{-23} {\textrm{(syst.)}}\pm 8{\textrm{(lumi.)}}\pm 4{\mathrm{(beam)}} pb assuming a top-quark mass of 172.5 GeV, in good agreement with the theoretical prediction of 25315+13253^{+13}_{-15} pb. The ttˉ(e,μ)+jetst\bar{t}\to (e,\mu)+{\mathrm{jets}} production cross-section in the fiducial region determined by the detector acceptance is also reported.Comment: Published version, 19 pages plus author list (35 pages total), 3 figures, 2 tables, all figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2013-06
    corecore