73 research outputs found
Molecular diagnostics: the changing culture of medical microbiology
Diagnostic molecular biology is arguably the fastest growing area in current laboratory-based medicine. Growth of the so called âomicsâ technologies has, over the last decade, led to a gradual migration away from the âone test, one pathogenâ paradigm, toward multiplex approaches to infectious disease diagnosis, which have led to significant improvements in clinical diagnostics and ultimately improved patient care
Genomic Investigation into Strain Heterogeneity and Pathogenic Potential of the Emerging Gastrointestinal Pathogen Campylobacter ureolyticus
The recent detection and isolation of C. ureolyticus from patients with diarrhoeal illness and inflammatory bowel diseases warrants further investigation into its role as an emerging pathogen of the human gastrointestinal tract. Regarding the pathogenic mechanisms employed by this species we provide the first whole genome analysis of two C. ureolyticus isolates including the type strain. Comparative analysis, subtractive hybridisation and gene ontology searches against other Campylobacter species identifies the high degree of heterogenicity between C. ureolyticus isolates, in addition to the identification of 106 putative virulence associated factors, 52 of which are predicted to be secreted. Such factors encompass each of the known virulence tactics of pathogenic Campylobacter spp. including adhesion and colonisation (CadF, PEB1, IcmF and FlpA), invasion (ciaB and 16 virB-virD4 genes) and toxin production (S-layer RTX and ZOT). Herein, we provide the first virulence catalogue for C. ureolyticus, the components of which theoretically provide this emerging species with sufficient arsenal to establish pathology
Campylobacter ureolyticus: an emerging gastrointestinal pathogen?
A total of 7194 faecal samples collected over a 1-year period from patients presenting with diarrhoea were screened for Campylobacter spp. using EntericBios, a multiplex-PCR system. Of 349 Campylobacter-positive samples, 23.8% were shown to be Campylobacter ureolyticus, using a combination of 16S rRNA gene analysis and highly specific primers targeting the HSP60 gene of this organism. This is, to the best of our knowledge, the first report of C. ureolyticus in the faeces of patients presenting with gastroenteritis and may suggest a role for this organism as an emerging enteric pathogen
Emerging dynamics of human campylobacteriosis in Southern Ireland
Infections with Campylobacter spp. pose a significant health burden worldwide. The significance of Campylobacter jejuni/Campylobacter coli infection is well appreciated but the contribution of non-C. jejuni/C. coli spp. to human gastroenteritis is largely unknown. In this study, we employed a two-tiered molecular study on 7194 patient faecal samples received by the Microbiology Department in Cork University Hospital during 2009. The first step, using EntericBioÂź (Serosep), a multiplex PCR system, detected Campylobacter to the genus level. The second step, utilizing Campylobacter species-specific PCR identified to the species level. A total of 340 samples were confirmed as Campylobacter genus positive, 329 of which were identified to species level with 33 samples containing mixed Campylobacter infections. Campylobacter jejuni, present in 72.4% of samples, was the most common species detected, however, 27.4% of patient samples contained non-C. jejuni/C. coli spp.; Campylobacter fetus (2.4%), Campylobacter upsaliensis (1.2%), Campylobacter hyointestinalis (1.5%), Campylobacter lari (0.6%) and an emerging species, Campylobacter ureolyticus (24.4%). We report a prominent seasonal distribution for campylobacteriosis (Spring with C. ureolyticus (March) preceeding slightly C. jejuni/C. coli (April/May)
Dietary Patterns and Risk of Colorectal Cancer Subtypes Classified by Fusobacterium nucleatum in Tumor Tissue
ImportanceâFusobacterium nucleatum appears to play a role in colorectal carcinogenesis through suppression of host immune response to tumor. Evidence also suggests that diet influences intestinal F. nucleatum. However, the role of F. nucleatum in mediating the relationship between diet and the risk of colorectal cancer is unknown.
ObjectiveâTo test the hypothesis that the associations of prudent diets (rich in whole grains and dietary fiber) and Western diets (rich in red and processed meat, refined grains, and desserts) with colorectal cancer risk may differ according to the presence of F. nucleatum in tumor tissue.
DesignâProspective cohort study.
SettingâThe Nursesâ Health Study (1980â2012) and the Health Professionals Follow-up Study (1986â2012).
Participantsâ121,700 US female nurses and 51,529 US male health professionals aged 30 to 55 years and 40 to 75 years, respectively, at enrollment.
ExposuresâPrudent and Western dietary patterns.
Main Outcomes and MeasuresâIncidence of colorectal carcinoma subclassified by F. nucleatum status in tumor tissue, determined by quantitative polymerase chain reaction.
ResultsâWe documented 1,019 incident colon and rectal cancer cases with available F. nucleatum data among predominantly white 137,217 individuals over 26â32 years of follow-up encompassing 3,643,562 person-years. The association of prudent diet with colorectal cancer significantly differed by tissue F. nucleatum status (Pheterogeneity = .01). Prudent diet score was associated with a lower risk of F. nucleatum-positive cancers [Ptrend = .003; multivariable hazard ratio of 0.43 (95% confidence interval 0.25â0.72) for the highest vs. the lowest prudent score quartile], but not with F. nucleatum-negative cancers (Ptrend = .47). Dietary component analyses suggested possible differential associations for the cancer subgroups according to intakes of dietary fiber (Pheterogeneity = .02). There was no significant heterogeneity between the subgroups according to Western dietary pattern scores (Pheterogeneity = .23).
Conclusions and RelevanceâPrudent diets rich in whole grains and dietary fiber are associated with a lower risk for F. nucleatum-positive colorectal cancer but not F. nucleatum-negative cancer, supporting a potential role for intestinal microbiota in mediating the association between diet and colorectal neoplasms
Association of <em>Fusobacterium nucleatum</em> with Specific T-cell Subsets in the Colorectal Carcinoma Microenvironment
AbstractPurpose: While evidence indicates that Fusobacterium nucleatum (F. nucleatum) may promote colorectal carcinogenesis through its suppressive effect on T-cellâmediated antitumor immunity, the specific T-cell subsets involved remain uncertain.Experimental Design: We measured F. nucleatum DNA within tumor tissue by quantitative PCR on 933 cases (including 128 F. nucleatumâpositive cases) among 4,465 incident colorectal carcinoma cases in two prospective cohorts. Multiplex immunofluorescence combined with digital image analysis and machine learning algorithms for CD3, CD4, CD8, CD45RO (PTPRC isoform), and FOXP3 measured various T-cell subsets. We leveraged data on Bifidobacterium, microsatellite instability (MSI), tumor whole-exome sequencing, and M1/M2-type tumor-associated macrophages [TAM; by CD68, CD86, IRF5, MAF, and MRC1 (CD206) multimarker assay]. Using the 4,465 cancer cases and inverse probability weighting method to control for selection bias due to tissue availability, multivariable-adjusted logistic regression analysis assessed the association between F. nucleatum and T-cell subsets.Results: The amount of F. nucleatum was inversely associated with tumor stromal CD3âș lymphocytes [multivariable OR, 0.47; 95% confidence interval (CI), 0.28â0.79, for F. nucleatumâhigh vs. -negative category; Ptrend = 0.0004] and specifically stromal CD3âșCD4âșCD45ROâș cells (corresponding multivariable OR, 0.52; 95% CI, 0.32â0.85; Ptrend = 0.003). These relationships did not substantially differ by MSI status, neoantigen load, or exome-wide tumor mutational burden. F. nucleatum was not significantly associated with tumor intraepithelial T cells or with M1 or M2 TAMs.Conclusions: The amount of tissue F. nucleatum is associated with lower density of stromal memory helper T cells. Our findings provide evidence for the interactive pathogenic roles of microbiota and specific immune cells.Abstract
Purpose: While evidence indicates that Fusobacterium nucleatum (F. nucleatum) may promote colorectal carcinogenesis through its suppressive effect on T-cellâmediated antitumor immunity, the specific T-cell subsets involved remain uncertain.
Experimental Design: We measured F. nucleatum DNA within tumor tissue by quantitative PCR on 933 cases (including 128 F. nucleatumâpositive cases) among 4,465 incident colorectal carcinoma cases in two prospective cohorts. Multiplex immunofluorescence combined with digital image analysis and machine learning algorithms for CD3, CD4, CD8, CD45RO (PTPRC isoform), and FOXP3 measured various T-cell subsets. We leveraged data on Bifidobacterium, microsatellite instability (MSI), tumor whole-exome sequencing, and M1/M2-type tumor-associated macrophages [TAM; by CD68, CD86, IRF5, MAF, and MRC1 (CD206) multimarker assay]. Using the 4,465 cancer cases and inverse probability weighting method to control for selection bias due to tissue availability, multivariable-adjusted logistic regression analysis assessed the association between F. nucleatum and T-cell subsets.
Results: The amount of F. nucleatum was inversely associated with tumor stromal CD3âș lymphocytes [multivariable OR, 0.47; 95% confidence interval (CI), 0.28â0.79, for F. nucleatumâhigh vs. -negative category; Ptrend = 0.0004] and specifically stromal CD3âșCD4âșCD45ROâș cells (corresponding multivariable OR, 0.52; 95% CI, 0.32â0.85; Ptrend = 0.003). These relationships did not substantially differ by MSI status, neoantigen load, or exome-wide tumor mutational burden. F. nucleatum was not significantly associated with tumor intraepithelial T cells or with M1 or M2 TAMs.
Conclusions: The amount of tissue F. nucleatum is associated with lower density of stromal memory helper T cells. Our findings provide evidence for the interactive pathogenic roles of microbiota and specific immune cells
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Integrated genomic characterization of oesophageal carcinoma
Oesophageal cancers are prominent worldwide; however, there are few targeted therapies and survival rates for these cancers remain dismal. Here we performed a comprehensive molecular analysis of 164 carcinomas of the oesophagus derived from Western and Eastern populations. Beyond known histopathological and epidemiologic distinctions, molecular features differentiated oesophageal squamous cell carcinomas from oesophageal adenocarcinomas. Oesophageal squamous cell carcinomas resembled squamous carcinomas of other organs more than they did oesophageal adenocarcinomas. Our analyses identified three molecular subclasses of oesophageal squamous cell carcinomas, but none showed evidence for an aetiological role of human papillomavirus. Squamous cell carcinomas showed frequent genomic amplifications of CCND1 and SOX2 and/or TP63, whereas ERBB2, VEGFA and GATA4 and GATA6 were more commonly amplified in adenocarcinomas. Oesophageal adenocarcinomas strongly resembled the chromosomally unstable variant of gastric adenocarcinoma, suggesting that these cancers could be considered a single disease entity. However, some molecular features, including DNA hypermethylation, occurred disproportionally in oesophageal adenocarcinomas. These data provide a framework to facilitate more rational categorization of these tumours and a foundation for new therapies
Recommended from our members
Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial.
Importance: Evidence regarding corticosteroid use for severe coronavirus disease 2019 (COVID-19) is limited. Objective: To determine whether hydrocortisone improves outcome for patients with severe COVID-19. Design, Setting, and Participants: An ongoing adaptive platform trial testing multiple interventions within multiple therapeutic domains, for example, antiviral agents, corticosteroids, or immunoglobulin. Between March 9 and June 17, 2020, 614 adult patients with suspected or confirmed COVID-19 were enrolled and randomized within at least 1 domain following admission to an intensive care unit (ICU) for respiratory or cardiovascular organ support at 121 sites in 8 countries. Of these, 403 were randomized to open-label interventions within the corticosteroid domain. The domain was halted after results from another trial were released. Follow-up ended August 12, 2020. Interventions: The corticosteroid domain randomized participants to a fixed 7-day course of intravenous hydrocortisone (50 mg or 100 mg every 6 hours) (nâ=â143), a shock-dependent course (50 mg every 6 hours when shock was clinically evident) (nâ=â152), or no hydrocortisone (nâ=â108). Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of ICU-based respiratory or cardiovascular support) within 21 days, where patients who died were assigned -1 day. The primary analysis was a bayesian cumulative logistic model that included all patients enrolled with severe COVID-19, adjusting for age, sex, site, region, time, assignment to interventions within other domains, and domain and intervention eligibility. Superiority was defined as the posterior probability of an odds ratio greater than 1 (threshold for trial conclusion of superiority >99%). Results: After excluding 19 participants who withdrew consent, there were 384 patients (mean age, 60 years; 29% female) randomized to the fixed-dose (nâ=â137), shock-dependent (nâ=â146), and no (nâ=â101) hydrocortisone groups; 379 (99%) completed the study and were included in the analysis. The mean age for the 3 groups ranged between 59.5 and 60.4 years; most patients were male (range, 70.6%-71.5%); mean body mass index ranged between 29.7 and 30.9; and patients receiving mechanical ventilation ranged between 50.0% and 63.5%. For the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively, the median organ support-free days were 0 (IQR, -1 to 15), 0 (IQR, -1 to 13), and 0 (-1 to 11) days (composed of 30%, 26%, and 33% mortality rates and 11.5, 9.5, and 6 median organ support-free days among survivors). The median adjusted odds ratio and bayesian probability of superiority were 1.43 (95% credible interval, 0.91-2.27) and 93% for fixed-dose hydrocortisone, respectively, and were 1.22 (95% credible interval, 0.76-1.94) and 80% for shock-dependent hydrocortisone compared with no hydrocortisone. Serious adverse events were reported in 4 (3%), 5 (3%), and 1 (1%) patients in the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively. Conclusions and Relevance: Among patients with severe COVID-19, treatment with a 7-day fixed-dose course of hydrocortisone or shock-dependent dosing of hydrocortisone, compared with no hydrocortisone, resulted in 93% and 80% probabilities of superiority with regard to the odds of improvement in organ support-free days within 21 days. However, the trial was stopped early and no treatment strategy met prespecified criteria for statistical superiority, precluding definitive conclusions. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707
Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples
Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
- âŠ