284 research outputs found
Partnering Strategies for Fitness Evaluation in a Pyramidal Evolutionary Algorithm
This paper combines the idea of a hierarchical distributed genetic algorithm
with different inter-agent partnering strategies. Cascading clusters of
sub-populations are built from bottom up, with higher-level sub-populations
optimising larger parts of the problem. Hence higher-level sub-populations
search a larger search space with a lower resolution whilst lower-level
sub-populations search a smaller search space with a higher resolution. The
effects of different partner selection schemes for (sub-)fitness evaluation
purposes are examined for two multiple-choice optimisation problems. It is
shown that random partnering strategies perform best by providing better
sampling and more diversity
Evolving Gene Regulatory Networks with Mobile DNA Mechanisms
This paper uses a recently presented abstract, tuneable Boolean regulatory
network model extended to consider aspects of mobile DNA, such as transposons.
The significant role of mobile DNA in the evolution of natural systems is
becoming increasingly clear. This paper shows how dynamically controlling
network node connectivity and function via transposon-inspired mechanisms can
be selected for in computational intelligence tasks to give improved
performance. The designs of dynamical networks intended for implementation
within the slime mould Physarum polycephalum and for the distributed control of
a smart surface are considered.Comment: 7 pages, 8 figures. arXiv admin note: substantial text overlap with
arXiv:1303.722
'On the Application of Hierarchical Coevolutionary Genetic Algorithms: Recombination and Evaluation Partners'
This paper examines the use of a hierarchical coevolutionary genetic algorithm under different partnering strategies. Cascading clusters of sub-populations are built from the bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level sub-populations potentially search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes amongst the sub-populations on solution quality are examined for two constrained optimisation problems. We examine a number of recombination partnering strategies in the construction of higher-level individuals and a number of related schemes for evaluating sub-solutions. It is shown that partnering strategies that exploit problem-specific knowledge are superior and can counter inappropriate (sub-) fitness measurements
Towards the Evolution of Novel Vertical-Axis Wind Turbines
Renewable and sustainable energy is one of the most important challenges
currently facing mankind. Wind has made an increasing contribution to the
world's energy supply mix, but still remains a long way from reaching its full
potential. In this paper, we investigate the use of artificial evolution to
design vertical-axis wind turbine prototypes that are physically instantiated
and evaluated under approximated wind tunnel conditions. An artificial neural
network is used as a surrogate model to assist learning and found to reduce the
number of fabrications required to reach a higher aerodynamic efficiency,
resulting in an important cost reduction. Unlike in other approaches, such as
computational fluid dynamics simulations, no mathematical formulations are used
and no model assumptions are made.Comment: 14 pages, 11 figure
- …