548 research outputs found

    Optical polarization of nuclear ensembles in diamond

    Full text link
    We report polarization of a dense nuclear-spin ensemble in diamond and its dependence on magnetic field and temperature. The polarization method is based on the transfer of electron spin polarization of negatively charged nitrogen vacancy color centers to the nuclear spins via the excited-state level anti-crossing of the center. We polarize 90% of the 14N nuclear spins within the NV centers, and 70% of the proximal 13C nuclear spins with hyperfine interaction strength of 13-14 MHz. Magnetic-field dependence of the polarization reveals sharp decrease in polarization at specific field values corresponding to cross-relaxation with substitutional nitrogen centers, while temperature dependence of the polarization reveals that high polarization persists down to 50 K. This work enables polarization of the 13C in bulk diamond, which is of interest in applications of nuclear magnetic resonance, in quantum memories of hybrid quantum devices, and in sensing.Comment: 8 pages, 5 figure

    Search for ultralight scalar dark matter with atomic spectroscopy

    Full text link
    We report new limits on ultralight scalar dark matter (DM) with dilaton-like couplings to photons that can induce oscillations in the fine-structure constant alpha. Atomic dysprosium exhibits an electronic structure with two nearly degenerate levels whose energy splitting is sensitive to changes in alpha. Spectroscopy data for two isotopes of dysprosium over a two-year span is analyzed for coherent oscillations with angular frequencies below 1 rad/s. No signal consistent with a DM coupling is identified, leading to new constraints on dilaton-like photon couplings over a wide mass range. Under the assumption that the scalar field comprises all of the DM, our limits on the coupling exceed those from equivalence-principle tests by up to 4 orders of magnitude for masses below 3 * 10^-18 eV. Excess oscillatory power, inconsistent with fine-structure variation, is detected in a control channel, and is likely due to a systematic effect. Our atomic spectroscopy limits on DM are the first of their kind, and leave substantial room for improvement with state-of-the-art atomic clocks.Comment: 5 pages, 4 figures; v2: references adde

    Magneto-Optical Cooling of Atoms

    Full text link
    We propose an alternative method to laser cooling. Our approach utilizes the extreme brightness of a supersonic atomic beam, and the adiabatic atomic coilgun to slow atoms in the beam or to bring them to rest. We show how internal-state optical pumping and stimulated optical transitions, combined with magnetic forces can be used to cool the translational motion of atoms. This approach does not rely on momentum transfer from photons to atoms, as in laser cooling. We predict that our method can surpass laser cooling in terms of flux of ultra-cold atoms and phase-space density, with lower required laser power and reduced complexity

    Light shift averaging in paraffin-coated alkali vapor cells

    Get PDF
    Light shifts are an important source of noise and systematics in optically pumped magnetometers. We demonstrate that the long spin coherence time in paraffin-coated cells leads to spatial averaging of the light shifts over the entire cell volume. This renders the averaged light shift independent, under certain approximations, of the light-intensity distribution within the sensor cell. These results and the underlying mechanism can be extended to other spatially varying phenomena in anti-relaxation-coated cells with long coherence times.Comment: 6 pages, 4 figure
    corecore