915 research outputs found

    Constructing the Enemy: How US Media Framed the USSR in the 1980s

    Get PDF
    Tyler Buchanan, Constructing the Enemy: How US Media Framed the USSR in the 1980s. This paper examines the presentation of media in the United States on American citizens through an analysis of the use of commercials and advertisements,. Ultimately, the media in the United States from the 1980s reveal a clear and apparent message the US media portrays the USSR to instill fear into the average American citizen. The 1980s was a hotbed for the ideological and political rivalry between the United States and the USSR during the Cold War. The United States sought to promote democracy and capitalism, while the Soviets and the Eastern Bloc promoted communism. This paper expands a niche field that many Americans know and feel today but has been previously neglected by historians. This field was neglected because the 1980s is still in recent years and historians are just starting to look back and see it has historical context. Furthermore, while some may perceive this thesis as redundant due to the ongoing relevance of public perceptions of the Soviet Union during that era, it is precisely this enduring significance that underscores the necessity of a nuanced historical examination

    How Chinese-American Cuisine was Advertised in the U.S. During the 1900s

    Get PDF
    This poster details the public opinion/view of Chinese-American cuisine changed from its founding in the early 1900s. This topic was closely related to the Chinese as they exclusively made the food up until recent years

    Getting a Head Start: Diet, Sub-Adult Growth, and Associative Learning in a Seed-Eating Passerine

    Get PDF
    Developmental stress, and individual variation in response to it, can have important fitness consequences. Here we investigated the consequences of variable dietary protein on the duration of growth and associative learning abilities of zebra finches, Taeniopygia guttata, which are obligate graminivores. The high-protein conditions that zebra finches would experience in nature when half-ripe seed is available were mimicked by the use of egg protein to supplement mature seed, which is low in protein content. Growth rates and relative body proportions of males reared either on a low-protein diet (mature seed only) or a high-protein diet (seed plus egg) were determined from body size traits (mass, head width, and tarsus) measured at three developmental stages. Birds reared on the high-protein diet were larger in all size traits at all ages, but growth rates of size traits showed no treatment effects. Relative head size of birds reared on the two diets differed from age day 95 onward, with high-diet birds having larger heads in proportion to both tarsus length and body mass. High-diet birds mastered an associative learning task in fewer bouts than those reared on the low-protein diet. In both diet treatments, amount of sub-adult head growth varied directly, and sub-adult mass change varied inversely, with performance on the learning task. Results indicate that small differences in head growth during the sub-adult period can be associated with substantial differences in adult cognitive performance. Contrary to a previous report, we found no evidence for growth compensation among birds on the low-protein diet. These results have implications for the study of vertebrate cognition, developmental stress, and growth compensation

    Authority in rebel groups: identity, recognition and the struggle over legitimacy

    Get PDF
    This article asks how rebel leaders capture and lose legitimacy within their own movement. Analysing these complex and often uneasy relations between elites and grassroots of insurgency is important for understanding the success or failure of peace processes. This is because internal contestation over authority between rival rebel leaders can drive a movement’s external strategy. Based on ethnographic research on the Karen and Kachin rebellions in Myanmar and insights from Political Sociology, the article suggests that leadership authority is linked to social identification and the claim to recognition among insurgent grassroots. If rebel leaders manage to satisfy their grassroots’ claim to recognition, their insurgent orders are stable. Failing this, their authority erodes and is likely to be challenged. These findings contribute to understanding insurgency and peace negotiations in Myanmar and civil wars more generally by showing how struggles over legitimacy within rebel groups drive wider dynamics of war and peace

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Inter- and intra-molecular interactions of Arabidopsis thaliana DELLA protein RGL1

    Get PDF
    The phytohormone gibberellin and the DELLA proteins act together to control key aspects of plant development. Gibberellin induces degradation of DELLA proteins by recruitment of an F-box protein using a molecular switch: a gibberellin-bound nuclear receptor interacts with the N-terminal domain of DELLA proteins, and this event primes the DELLA C-terminal domain for interaction with the F-box protein. However, the mechanism of signalling between the N- and C-terminal domains of DELLA proteins is unresolved. In the present study, we used in vivo and in vitro approaches to characterize di- and tri-partite interactions of the DELLA protein RGL1 (REPRESSOR OF GA1-3-LIKE 1) of Arabidopsis thaliana with the gibberellin receptor GID1A (GIBBERELLIC ACID-INSENSITIVE DWARF-1A) and the F-box protein SLY1 (SLEEPY1). Deuterium-exchange MS unequivocally showed that the entire N-terminal domain of RGL1 is disordered prior to interaction with the GID1A; furthermore, association/dissociation kinetics, determined by surface plasmon resonance, predicts a two-state conformational change of the RGL1 N-terminal domain upon interaction with GID1A. Additionally, competition assays with monoclonal antibodies revealed that contacts mediated by the short helix Asp-Glu-Leu-Leu of the hallmark DELLA motif are not essential for the GID1A–RGL1 N-terminal domain interaction. Finally, yeast two- and three-hybrid experiments determined that unabated communication between N- and C-terminal domains of RGL1 is required for recruitment of the F-box protein SLY1

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    Full text link
    Measurements of electrons from Îœe\nu_e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50~MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.Comment: 19 pages, 10 figure
    • 

    corecore