22,028 research outputs found

    Exponential Decay and Fermi's Golden Rule from an Uncontrolled Quantum Zeno Effect

    Full text link
    We modify the theory of the Quantum Zeno Effect to make it consistent with the postulates of quantum mechanics. This modification allows one, throughout a sequence of observations of an excited system, to address the nature of the observable and thereby to distinguish survival from non-decay, which is necessary whenever excited states are degenerate. As a consequence, one can determine which types of measurements can possibly inhibit the exponential decay of the system. We find that continuous monitoring taken as the limit of a sequence of ideal measurements will only inhibit decay in special cases, such as in well-controlled experiments. Uncontrolled monitoring of an unstable system, however, can cause exponentially decreasing non-decay probability at all times. Furthermore, calculating the decay rate for a general sequence of observations leads to a straightforward derivation of Fermi's Golden Rule, that avoids many of the conceptual difficulties normally encountered. When multiple decay channels are available, the derivation reveals how the total decay rate naturally partitions into a sum of the decay rates for the various channels, in agreement with observations. Continuous and unavoidable monitoring of an excited system by an uncontrolled environment may therefore be a mechanism by which to explain the exponential decay law.Comment: 18 pages, no figures. Added references to theory and experiments, distinguished survival from non-decay, and added derivation for multiple decay channel

    Special treatment reduces helium permeation of glass in vacuum systems

    Get PDF
    Internal surfaces of the glass component of a vacuum system are exposed to cesium in gaseous form to reduce helium permeation. The cesium gas is derived from decomposition of cesium nitrate through heating. Several minutes of exposure of the internal surfaces of the glass vessel are sufficient to complete the treatment

    Is there a fifth international radiocarbon intercomparison (VIRI)?

    Get PDF
    The issue of comparability of measurements (and thus bias, accuracy, and precision of measurement) from diverse laboratories is one which has been the focus of some attention both within the radiocarbon community and the wider user communities. As a result, the C-14 community has undertaken a widescale, far-reaching, and evolving program of inter- comparisons, to the benefit of laboratories and users alike. The benefit to the users is, however, indirect, since the C-14 intercomparisons have not been used to generate "league tables" of performance, but rather to allow individual laboratories to check procedures and modify them as required. The historical progression of C-14 laboratory intercomparisons from the Third (TIRI, completed in 1995, Gulliksen and Scott 1995) and Fourth (FIRI, completed in 2000, Scott 2003; Boaretto et al. 2000; Bryant et al. 2002) suggests that a Fifth (VIRI) should also be expected. We describe the plans for VIRI
    • …
    corecore