1,761 research outputs found

    A strategy for efficiently collecting aerosol condensate using silica fibers:application to carbonyl emissions from e-cigarettes

    Get PDF
    Analysing harmful constituents in e-cigarette aerosols typically involves adopting a methodology used for analysing tobacco smoke. Cambridge filter pads (CFP) are the basis of numerous protocols for analysing the various classes of compounds representing 93 harmful and potentially harmful constituents identified in tobacco smoke by the FDA. This paper describes a simplified method for trapping the low volatility components of e-cigarette aerosols using a single trapping procedure followed by physical extraction. The trap is a plug of amorphous silica fibres (0.75 g of 4 ”m diameter) within a 10mL syringe inserted between the e-cigarette mouthpiece and the pump of the vaping machine. The method is evaluated for emissions from three generations of e-cigarette device (Kangertech CE4, EVOD and Subox Mini-C). On average the silica wool traps about 94% of the vapourised liquid mass in the three devices and higher levels of condensate is retained before reaching saturation compared with CFP. The condensate is then physically extracted from the silica wool plug using a centrifuge. Condensate is then available for use directly in multiple analytical procedures or toxicological experiments. The method is tested by comparison with published analyses of carbonyls, among the most potent toxicants and carcinogens in e-cigarette emissions. Ranges for HPLC-DAD analyses of carbonyl-DNPH derivatives in a laboratory formulation of e-liquid are formaldehyde (0.182±0.023 to 9.896±0.709 ”g puff-1), acetaldehyde (0.059±0.005 to 0.791±0.073 ”g puff-1) and propionaldehyde (0.008±0.0001 to 0.033±0.023 ”g puff-1); other carbonyls are identified and quantified. Carbonyls concentrations are also consistent with published experiments showing marked increases in with variable power settings (10W - 50W). Compared with CFPs, e-cigarette aerosol collection by silica wool requires only one vaping session for multiple analyte groups, traps more condensate per puff, collects more condensate before saturating

    Metabolomic analysis by UAE-GC MS and antioxidant activity of <i>Salvia hispanica </i>(L.) seeds grown under different irrigation regimes

    Get PDF
    Chia (Salvia hispanica L.) is an emerging crop with a high content of α-linolenic acid and metabolites of industrial and pharmaceutical interest but information on metabolome variations in response to agricultural management is scarce. We investigated the yield and metabolic profile of the seeds of two chia populations, one commercial black (B) and one long-day flowering genotype (G8), in response to two irrigation levels: replacement of 100% ET⁠0 (I) or rainfed (NI). Seed yield was higher in irrigated plots in G8 only (0.255kgm⁠−2 for I vs 0.184kgm⁠−2 for NI) while it was very low regardless of irrigation in B due to late flowering. Ultrasound assisted extraction (UAE) of seeds followed by gas chromatography-mass spectrometry (GC/MS) analysis showed differences in fatty acids and the major classes of organic compounds due to both genotype and irrigation, especially in the non-polar phase where irrigated samples showed a higher content of α-linolenic and other fatty acids and a lower oleic/linoleic ratio (47.4 in NI vs. 39.6 in I). The antioxidant activity, expressed as trolox equivalent antioxidant capacity (TEAC), ranged from 1.317±0.027 to 2.174±0.010mmol TEAC/g of defatted chia seed after 2 and 40min respectively, and was negatively affected by irrigation. The total polyphenolic content (TPC) measured with the Folin-Ciocalteu method, also decreased with irrigation. According to our results irrigation can affect chia yield, metabolome and antioxidant behavior but some of the effects are genotype-dependent

    Metabolomics driven analysis by UAEGC-MS and antioxidant activity of Chia (<i>Salvia hispanica </i>L.) commercial and mutant seeds

    Get PDF
    Chia is a food plant producing seeds which have seen increasing interest owing to their health benefits. This work is the first report on the metabolite profile, total polyphenols and antioxidant activity of chia seeds, determined by ultrasound-assisted extraction, coupled with gas chromatography-mass spectrometry (UAE GC-MS). Different chia sources were compared: two commercial (black and white) and three early flowering (G3, G8 and G17) mutant genotypes. Organic extracts were mainly composed of mono- and polyunsaturated fatty acids with alpha-linolenic being the most abundant. Polar extracts contained sucrose, methylgalactoside and glucose as main sugars. Antioxidant activity and total polyphenolic content were correlated. Chemical composition and yield potential of early flowering genotypes were different from commercial chia, and while white chia showed the highest content of omega-3 fatty acids, the high content of nutraceuticals in G17 and G8 suggests them as a potential source of raw materials for the food/feed industry

    Explorative investigation of the anti-glycative effect of a rapeseed by-product extract

    Get PDF
    Formation of Advanced Glycation End-products (AGEs) in biological systems are increased during hyperglycaemia due to higher levels of circulating glucose, as well as carbonyl reactive species. AGEs are causative factors of common chronic diseases. Since synthetic AGE-inhibitors exert unwanted side effects and polyphenols act as potent antiglycative agents, vegetables (fruits, seeds and related by-products) are good candidates for searching natural inhibitors. The aim of this research is to explore the suitability of a polyphenol-rich rapeseed cake extract (RCext) to decrease the formation of AGEs in an in vitro model. Total Phenolic Content, antioxidant, anti-glycative activity, specific inhibition of AGEs (pentosidine and argypyrimidine), and methylglyoxal trapping capacity of the RCext were evaluated. The metabolomic profile of the extract was also analysed through GC-MS. Different phenols, amino acids, carbohydrates, organic acids and fatty acids are identified in the RCE by GC-MS. Results confirm the high concentration of polyphenols correlated with the antioxidant capacity and anti-glycative activity in a dose dependent manner. Rapeseed cake extract (3.7 mg mL−1) significantly reduced the formation of free fluorescent AGEs and pentosidine up to 34.85%. The anti-glycative activity of the extract is likely to be due to the high concentration of sinapinic acid in its metabolic profile, and the mechanism of action is mediated by methylglyoxal trapping. Results show a promising potential for using rapeseed cake extract as a food supplement to ameliorate the formation of AGEs. Rapeseed cake extract should therefore be considered a potential candidate for the prevention of glycation-associated complications of age-related pathologie

    Metabolomic fingerprinting of food plants by nuclear magnetic resonance spectroscopy and gas chromatography/mass spectrometry

    Get PDF
    Metabolomic analysis of food plants allows to obtain a fingerprinting of plant extracts by using different techniques, such as NMR spectroscopy and mass spectrometry coupled with multivariate data analysis. In this dissertation, two plants of great interest in food industry were studied: the artichoke and sage. The metabolic profile of fourteen artichoke populations (Cynara cardunculus L. var. scolymus L. Fiori) and one cultivated cardoon (Cynara cardunculus L. var. altilis DC) was characterised. A comparative analysis between commercial short-day flowering chia (S. hispanica) seeds and mutant genotypes was also achieved in order to define possible differences in the chemical composition due to mutations. The analysis was also extended to two samples of chia seeds to evaluate the effect of fertilization and irrigation on the metabolite composition. Findings showed that an untargeted metabolomic approach may be an effective tool for chemotaxonomy classification when limited information are available. Moreover, metabolomics can be used as monitoring technique to control the agronomic management and its non-invasive features make it an ideal tool for pharmaceutical, agricultural and food industries

    Metabolomics and chemometrics of seven aromatic plants:carob, eucalyptus, laurel, mint, myrtle, rosemary and strawberry tree

    Get PDF
    Introduction: Arbutus unedo L. (strawberry tree), Ceratonia siliqua L. (carob), Eucalyptus camaldulensis Dehnh. (eucalyptus), Laurus nobilis L. (laurel), Mentha aquatica L. (water mint), Myrtus communis L. (common myrtle), and Rosmarinus officinalis L. (rosemary) are aromatic plants from the Mediterranean region whose parts and preparations are used for their nutritional properties and health benefits. Objectives: To evaluate and compare the metabolites profile, total phenol content (TPC), and antioxidant activity of plant leaves for their future use. Gas chromatography–mass spectrometry (GC–MS) was used for metabolomics. Data comparison was performed by chemometrics. Methodology: Polar and apolar extracts were analysed using untargeted GC–MS metabolomics followed by chemometrics (principal component analysis, heatmap correlation and dendrogram) to identify, quantify and compare the major organic compounds in the plants. Additionally, nuclear magnetic resonance (NMR) spectroscopy was used for the laurel polar extract to identify d-gluco-l-glycero-3-octulose whose presence was unclear from the GC–MS data. TPC and antioxidant assays were performed using classical methods (Folin–Ciocalteu, 2,2â€Č-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH)) and correlated to the phytochemical profiles. Results: Forty-three metabolites were identified including amino acids, organic acids, carbohydrates, phenols, polyols, fatty acids, and alkanes. Eight metabolites (d-fructose, d-glucose, d-mannose, gallic acid, quinic acid, myo-inositol, palmitic and stearic acids) were in common between all species. d-Gluco-l-glycero-3-octulose (37.29 ± 1.19%), d-pinitol (31.33 ± 5.12%), and arbutin (1.30 ± 0.44%,) were characteristic compounds of laurel, carob, and strawberry tree, respectively. Carob showed the highest values of TPC and antioxidant activity. Conclusion: GC–MS metabolomics and chemometrics analyses are fast and useful methods to determine and compare the metabolomics profiling of aromatic plants of food and industrial interest.</p

    Evaluation of the effect of berry extracts on carboxymethyllysine and lysine in ultra-high temperature treated milk

    Get PDF
    Both the Maillard reaction (MR) and thermal treatment influence the nutritional value of milk. In this paper, the capability of polyphenolic berry extract (PBE) to inhibit MR in an ultra-high temperature (UHT) treated milk was investigated. Total polyphenol content and antioxidant capacity of blueberry (BE) and raspberry extracts (RE) were also tested. A gas chromatography-mass spectrometry (GC-MS) method was developed to monitor the MR product N Δ-(carboxymethyl)-L-lysine (CML) and L-lysine (LYS). PBE was added to milk at 0.05 and 0.1% w/v prior to UHT processing. Data revealed that formation of CML was significantly reduced (23.4 ± 5.1 %) by addition of 0.1% w/v BE. The final concentrations of LYS measured following the addition of PBE prior to thermal treatment were statistically similar to the control milk which was not subjected to thermal processing. Additionally, the metabolic profile of milk samples was investigated by GC-MS and visualised using ‘FancyTiles’

    Spectroscopic and multivariate data-based method to assess the metabolomic fingerprint of Mediterranean plants

    Get PDF
    Introduction: Most secondary metabolites from plants have a prominent defensive role and repellency against predators and microbial pathogens. These properties largely vary among plant species and offer potential applications as biologically active compounds in medicine as well in agriculture. Objectives: We propose a new procedure that combine different spectroscopic techniques and multivariate data analysis to determine the chemical composition and the relative amounts of each metabolites and/or each class of organic compounds. The approach was used for a rapid identification of secondary metabolites from leaf and root of eight Mediterranean plants species. Methodology: The polar and the apolar extracts of two leaves and roots of each plant were analysed by proton nuclear magnetic resonance (1H-NMR) and gas chromatography coupled to mass spectrometry (GC–MS), respectively. Multivariate data analysis was used for a faster interpretation of data. Results: The metabolic fingerprint of the Mediterranean plants, Acanthus mollis, Dittrichia viscosa, Festuca drymeja, Fraxinus ornus, Fagus sylvatica, Hedera helix, Quercus ilex, and Typha latifolia, showed a complex chemical composition, being specific for each species and plant tissue. Two alditols, mannitol and quercitol, were found in manna ash (Fraxinus ornus) and holm oak (Q. ilex) polar leaf extracts, respectively. The highest levels of aromatic compounds were found in D. viscosa and T. latifolia. Fatty acids were the predominant class of compounds in all apolar extracts under investigation. Triterpene were almost exclusively found in roots, except for holm oak, where they constitute 58% of total extract. Steroids were widespread in leaf extracts. Conclusion: The major advantages of the proposed approach are versatility and rapidity, thus making it suitable for a fast comparison among species and plant tissue types.</p

    Metabolomic analysis and antioxidant activity of wild type and mutant Chia (Salvia hispanica L.) stem and flower grown under different irrigation regimes

    Get PDF
    BACKGROUND: Chia (Salvia hispanica L.) is a functional food from Central America. Interest in it is growing rapidly due to the many health benefits from the seed. However, when chia is grown at high latitudes, seed yield may be low whereas a high stem biomass and immature inflorescences are produced. Little is known about the chemical composition and the properties of stems and flowers. In this work, the metabolite profile, the antioxidant activity, and the total polyphenol content of stems and inflorescences were evaluated in a factorial experiment with different chia populations (commercial black chia and long-day flowering mutants G3, G8, and G17) and irrigation (100% and 50% of evapotranspiration).RESULTS: The results show the influence of irrigation and seed source on the antioxidant activity and total polyphenol content of chia flower and stem. Inflorescences exhibit higher antioxidant activity, suggesting their potential use as natural antioxidant. The mutants G3 and G8, at 50% irrigation, contained the highest amounts of compounds with nutraceutical value, especially within the flower. The mutant G17 showed lower antioxidant activity and polyphenol content compared to other seed sources but exhibited high omega 3 content in flowers but low in stems. This indicates that chia varieties should be chosen according to the objective of cultivation.CONCLUSION: These findings, indicating a close relation of metabolite content with irrigation and seed source, may provide the basis for the use of chia flower and stem for their nutraceutical value in the food, feed, and supplement industries.</p

    Metabolomics approach based on NMR spectroscopy and multivariate data analysis to explore the interaction between the leafminer<i> Tuta absoluta</i> and tomato (<i>Solanum lycopersicum</i>)

    Get PDF
    Introduction: Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is one of the most devastating and harmful pests of tomato (Solanum lycopersicum) crops causing up to 80–100% yield losses. A large arsenal of plant metabolites is induced by the leafminer feeding including defence compounds that could differ among varieties. Objective: To compare the metabolomic changes of different genotypes of tomato (tolerant “T”, susceptible “S” and “F1” hybrid obtained between T and S) after exposition to T. absoluta. Methodology: Nuclear magnetic resonance (NMR) spectroscopy followed by multivariate data analysis were performed to analyse the metabolic profiles of control and infested samples on three different tomato genotypes.Results: Signals related to GABA (γ-aminobutyric acid) were relatively much higher in all infested samples compared to the non-infested plants used as control. Infested T genotype samples were the most abundant in organic acids, including fatty acids and acyl sugars, chlorogenic acid, neo-chlorogenic acid and feruloyl quinic acid, indicating a clear link between the exposure to leafminer. Results also showed an increase of trigonelline in all tomato varieties after exposition to T. absoluta. Conclusion: Metabolomics approach based on NMR spectroscopy followed by multivariate data analysis allowed for a detailed metabolite profile of plant defences, providing fundamental information for breeding programmes in plant crops.</p
    • 

    corecore