366 research outputs found

    On the trail of the 'new head' in Les Treilles

    Get PDF
    The vertebrate brain develops in association with neighboring tissues: neural crest, placodes, mesoderm and endoderm. The molecular and evolutionary relationships between the forming nervous system and the other craniofacial structures were at the focus of a recent meeting at the Fondation des Treilles in France. Entitled 'Relationships between Craniofacial and Neural Development', the meeting brought together researchers working on diverse species, the findings of whom provide clues as to the origin and diversity of the brain and facial regions that are involved in forming the 'new head' of vertebrates

    From egg to organism

    Get PDF
    The embryo is a remarkable self-assembly machine. From a single cell, the fertilized egg, arises all of the differentiated cell types of the body. Embryos unfold in an elegantly choreographed manner that we strive to understand by observing the process, dissecting it into smaller bits, and mucking up the works by expressing too much or too little of some protein. Yet the mystery remains and, as knowledge and technology advance, we understand more about the depth of its complexity than about the process itself

    Migrating neural crest cells in the trunk of the avian embryo are multipotent

    Get PDF
    Trunk neural crest cells migrate extensively and give rise to diverse cell types, including cells of the sensory and autonomic nervous systems. Previously, we demonstrated that many premigratory trunk neural crest cells give rise to descendants with distinct phenotypes in multiple neural crest derivatives. The results are consistent with the idea that neural crest cells are multipotent prior to their emigration from the neural tube and become restricted in phenotype after leaving the neural tube either during their migration or at their sites of localization. Here, we test the developmental potential of migrating trunk neural crest cells by microinjecting a vital dye, lysinated rhodamine dextran (LRD), into individual cells as they migrate through the somite. By two days after injection, the LRD-labelled clones contained from 2 to 67 cells, which were distributed unilaterally in all embryos. Most clones were confined to a single segment, though a few contributed to sympathetic ganglia over two segments. A majority of the clones gave rise to cells in multiple neural crest derivatives. Individual migrating neural crest cells gave rise to both sensory and sympathetic neurons (neurofilament-positive), as well as cells with the morphological characteristics of Schwann cells, and other non-neuronal cells (both neurofilament-negative). Even those clones contributing to only one neural crest derivative often contained both neurofilament-positive and neurofilament-negative cells. Our data demonstrate that migrating trunk neural crest cells can be multipotent, giving rise to cells in multiple neural crest derivatives, and contributing to both neuronal and non-neuronal elements within a given derivative. Thus, restriction of neural crest cell fate must occur relatively late in migration or at the final sites of neural crest cell localization

    Cell lineage analysis of the avian neural crest

    Get PDF
    Neural crest cells migrate extensively and give rise to diverse cell types, including cells of the sensory and autonomic nervous systems. A major unanswered question concerning the neural crest is when and how the neural crest cells become determined to adopt a particular fate. We have explored the developmental potential of trunk neural crest cells in avian embryos by microinjecting a vital dye, lysinated rhodamine dextran (LRD), into individual cells within the dorsal neural tube. We find that premigratory and emigrating neural crest cells give rise to descendants with distinct phenotypes in multiple neural crest derivatives. These results are consistent with the idea that neural crest cells are multipotent prior to their emigration from the neural tube and become restricted in phenotype after emigration from the neural tube either during their migration or at their sites of localization. To determine whether neural crest cells become restricted during their migration, we have microinjected individual trunk neural crest cells with dye shortly after they leave the neural tube or as they migrate through the somite. We find that a majority of the clones derived from migrating neural crest cells appear to be multipotent; individual migrating neural crest cells gave rise to both sensory and sympathetic neurons, as well as cells with the morphological characteristics of Schwann cells, and other nonneuronal cells. Even those clones contributing to only one neural crest derivative often contained both neurofilament-positive and neurofilament-negative cells. These data demonstrate that migrating trunk neural crest cells, like their premigratory progenitors, can be multipotent. They give rise to cells in multiple neural crest derivatives and contribute to both neuronal and non-neuronal elements within a given derivative. Thus, restriction of neural crest cell fate must occur relatively late in migration or at the final destinations

    Avian neural crest cell attachment to laminin: involvement of divalent cation dependent and independent integrins

    Get PDF
    The mechanisms of neural crest cell interaction with laminin were explored using a quantitative cell attachment assay. With increasing substratum concentrations, an increasing percentage of neural crest cells adhere to laminin. Cell adhesion at all substratum concentrations was inhibited by the CSAT antibody, which recognizes the chick Ī²_1 subunit of integrin, suggesting that Ī²_(1-)integrins mediate neural crest cell interactions with laminin. The HNK-1 antibody, which recognizes a carbohydrate epitope, inhibited neural crest cell attachment to laminin at low coating concentrations (>1 Āµg ml^(-1); Low-LM), but not at high coating concentration of laminin (10 Āµg ml^(-1); High-LM). Attachment to Low-LM occurred in the absence of divalent cations, whereas attachment to High-LM required >0.1 mM Ca^(2+) or Mn^(2+). Neural crest cell adherence to the E8 fragment of laminin, derived from its long arm, was similar to that on intact laminin at high and low coating concentrations, suggesting that this fragment contains the neural crest cell binding site(s). The HNK-1 antibody recognizes a protein of 165,000 Mr which is also found in immunoprecipitates using antibodies against the Ī²_1 subunit of integrin and is likely to be an integrin alpha subunit or an integrin-associated protein. Our results suggest that the HNK-1 epitope on neural crest cells is present on or associated with a novel or differentially glycosylated form of Ī²_(1-)integrin, which recognizes laminin in the apparent absence of divalent cations. We conclude that neural crest cells have at least two functionally independent means of attachment to laminin which are revealed at different substratum concentrations and/or conformations of laminin

    A novel spalt gene expressed in branchial arches affects the ability of cranial neural crest cells to populate sensory ganglia

    Get PDF
    Cranial neural crest cells differentiate into diverse derivatives including neurons and glia of the cranial ganglia, and cartilage and bone of the facial skeleton. Here, we explore the function of a novel transcription factor of the spalt family that might be involved in early cell-lineage decisions of the avian neural crest. The chicken spalt4 gene (csal4) is expressed in the neural tube, migrating neural crest, branchial arches and, transiently, in the cranial ectoderm. Later, it is expressed in the mesectodermal, but not neuronal or glial, derivatives of midbrain and hindbrain neural crest. After over-expression by electroporation into the cranial neural tube and neural crest, we observed a marked redistribution of electroporated neural crest cells in the vicinity of the trigeminal ganglion. In control-electroporated embryos, numerous, labeled neural crest cells ([similar]80% of the population) entered the ganglion, many of which differentiated into neurons. By contrast, few ([similar]30% of the population) spalt-electroporated neural crest cells entered the trigeminal ganglion. Instead, they localized in the mesenchyme around the ganglionic periphery or continued further ventrally to the branchial arches. Interestingly, little or no expression of differentiation markers for neurons or other cell types was observed in spalt-electroporated neural crest cells

    In ovo time-lapse analysis after dorsal neural tube ablation shows rerouting of chick hindbrain neural crest

    Get PDF
    Previous analyses of single neural crest cell trajectories have suggested important roles for interactions between neural crest cells and the environment, and amongst neural crest cells. To test the relative contribution of intrinsic versus extrinsic information in guiding cells to their appropriate sites, we ablated subpopulations of premigratory chick hindbrain neural crest and followed the remaining neural crest cells over time using a new in ovo imaging technique. Neural crest cell migratory behaviors are dramatically different in ablated compared with unoperated embryos. Deviations from normal migration appear either shortly after cells emerge from the neural tube or en route to the branchial arches, areas where cell-cell interactions typically occur between neural crest cells in normal embryos. Unlike the persistent, directed trajectories in normal embryos, neural crest cells frequently change direction and move somewhat chaotically after ablation. In addition, the migration of neural crest cells in collective chains, commonly observed in normal embryos, was severely disrupted. Hindbrain neural crest cells have the capacity to reroute their migratory pathways and thus compensate for missing neural crest cells after ablation of neighboring populations. Because the alterations in neural crest cell migration are most dramatic in regions that would normally foster cell-cell interactions, the trajectories reported here argue that cell-cell interactions have a key role in the shaping of the neural crest migration

    T-cadherin expression alternates with migrating neural crest cells in the trunk of the avian embryo

    Get PDF
    Trunk neural crest cells and motor axons move in a segmental fashion through the rostral (anterior) half of each somitic sclerotome, avoiding the caudal (posterior) half. This metameric migration pattern is thought to be caused by molecular differences between the rostral and caudal portions of the somite. Here, we describe the distribution of T-cadherin (truncated-cadherin) during trunk neural crest cell migration. T-cadherin, a novel member of the cadherin family of cell adhesion molecules was selectively expressed in the caudal half of each sclerotome at all times examined. T-cadherin immunostaining appeared graded along the rostrocaudal axis, with increasing levels of reactivity in the caudal halves of progressively more mature (rostral) somites. The earliest T-cadherin expression was detected in a small population of cells in the caudal portion of the somite three segments rostral to last-formed somite. This initial T-cadherin expression was observed concomitant with the invasion of the first neural crest cells into the rostral portion of the same somite in stage 16 embryos. When neural crest cells were ablated surgically prior to their emigration from the neural tube, the pattern of T-cadherin immunoreactivity was unchanged compared to unoperated embryos, suggesting that the metameric T-cadherin distribution occurs independent of neural crest cell signals. This expression pattern is consistent with the possibility that T-cadherin plays a role in influencing the pattern of neural crest cell migration and in maintaining somite polarity

    Spalt4 mediates invagination and otic placode gene expression in cranial ectoderm

    Get PDF
    Vertebrate placodes are regions of thickened head ectoderm that contribute to paired sensory organs and cranial ganglia. We demonstrate that the transcription factor Spalt4 (also known as Sall4) is broadly expressed in chick preplacodal epiblast and later resolves to otic, lens and olfactory placodes. Ectopic expression of Spalt4 by electroporation is sufficient to induce invagination of non-placodal head ectoderm and prevent neurogenic placodes from contributing to cranial ganglia. Conversely, loss of Spalt4 function in the otic placode results in abnormal otic vesicle development. Intriguingly, Spalt4 appears to initiate a placode program appropriate for the axial level but is not involved in later development of specific placode fates. Fgfs can regulate Spalt4, since implantation of Fgf2 beads into the area opaca induces its expression. The results suggest that Spalt4 is involved in early stages of placode development, initiating cranial ectodermal invagination and region-specific gene regulatory networks

    Neural crest induction in Xenopus: evidence for a two-signal model

    Get PDF
    We have investigated the molecular interactions underlying neural crest formation in Xenopus. Using chordin overexpression to antagonize endogenous BMP signaling in whole embryos and explants, we demonstrate that such inhibition alone is insufficient to account for neural crest induction in vivo. We find, however, that chordin-induced neural plate tissue can be induced to adopt neural crest fates by members of the FGF and Wnt families, growth factors that have previously been shown to posteriorize induced neural tissue. Overexpression of a dominant negative XWnt-8 inhibits the expression of neural crest markers, demonstrating the necessity for a Wnt signal during neural crest induction in vivo. The requirement for Wnt signaling during neural crest induction is shown to be direct, whereas FGF-mediated neural crest induction may be mediated by Wnt signals. Overexpression of the zinc finger transcription factor Slug, one of the earliest markers of neural crest formation, is insufficient for neural crest induction. Slug-expressing ectoderm will generate neural crest in the presence of Wnt or FGF-like signals, however, bypassing the need for BMP inhibition in this process. A two-step model for neural crest induction is proposed
    • ā€¦
    corecore