361 research outputs found
A double-helix neutron detector using micron-size B-10 powder
A double-helix electrode configuration is combined with a B powder
coating technique to build large-area (9 in 36 in) neutron detectors.
The neutron detection efficiency for each of the four prototypes is comparable
to a single 2-bar He drift tube of the same length (36 in). One unit has
been operational continuously for 18 months and the change of efficiency is
less than 1%. An analytic model for pulse heigh spectra is described and the
predicted mean film thickness agrees with the experiment to within 30%. Further
detector optimization is possible through film texture, power size, moderator
box and gas. The estimated production cost per unit is less than 3k US\$ and
the technology is thus suitable for deployment in large numbers
Indirect Inference for Time Series Using the Empirical Characteristic Function and Control Variates
We estimate the parameter of a stationary time series process by minimizing
the integrated weighted mean squared error between the empirical and simulated
characteristic function, when the true characteristic functions cannot be
explicitly computed. Motivated by Indirect Inference, we use a Monte Carlo
approximation of the characteristic function based on iid simulated blocks. As
a classical variance reduction technique, we propose the use of control
variates for reducing the variance of this Monte Carlo approximation. These two
approximations yield two new estimators that are applicable to a large class of
time series processes. We show consistency and asymptotic normality of the
parameter estimators under strong mixing, moment conditions, and smoothness of
the simulated blocks with respect to its parameter. In a simulation study we
show the good performance of these new simulation based estimators, and the
superiority of the control variates based estimator for Poisson driven time
series of counts.Comment: 38 pages, 2 figure
The uniqueness of flow in probing the aggregation behavior of clinically relevant antibodies
The development of therapeutic monoclonal antibodies (mAbs) can be hindered by their tendency to aggregate throughout their lifetime, which can illicit immunogenic responses and render mAb manufacturing unfeasible. Consequently, there is a need to identify mAbs with desirable thermodynamic stability, solubility, and lack of self‐association. These behaviors are assessed using an array of in silico and in vitro assays, as no single assay can predict aggregation and developability. We have developed an extensional and shear flow device (EFD), which subjects proteins to defined hydrodynamic forces which mimic those experienced in bioprocessing. Here, we utilize the EFD to explore the aggregation propensity of 33 IgG1 mAbs, whose variable domains are derived from clinical antibodies. Using submilligram quantities of material per replicate, wide‐ranging EFD‐induced aggregation (9‐81% protein in pellet) was observed for these mAbs, highlighting the EFD as a sensitive method to assess aggregation propensity. By comparing the EFD‐induced aggregation data to those obtained previously from 12 other biophysical assays, we show that the EFD provides distinct information compared with current measures of adverse biophysical behavior. Assessing a candidate's liability to hydrodynamic force thus adds novel insight into the rational selection of developable mAbs that complements other assays
Statistical Consequences of Devroye Inequality for Processes. Applications to a Class of Non-Uniformly Hyperbolic Dynamical Systems
In this paper, we apply Devroye inequality to study various statistical
estimators and fluctuations of observables for processes. Most of these
observables are suggested by dynamical systems. These applications concern the
co-variance function, the integrated periodogram, the correlation dimension,
the kernel density estimator, the speed of convergence of empirical measure,
the shadowing property and the almost-sure central limit theorem. We proved in
\cite{CCS} that Devroye inequality holds for a class of non-uniformly
hyperbolic dynamical systems introduced in \cite{young}. In the second appendix
we prove that, if the decay of correlations holds with a common rate for all
pairs of functions, then it holds uniformly in the function spaces. In the last
appendix we prove that for the subclass of one-dimensional systems studied in
\cite{young} the density of the absolutely continuous invariant measure belongs
to a Besov space.Comment: 33 pages; companion of the paper math.DS/0412166; corrected version;
to appear in Nonlinearit
Mechanical Strength of 17 134 Model Proteins and Cysteine Slipknots
A new theoretical survey of proteins' resistance to constant speed stretching
is performed for a set of 17 134 proteins as described by a structure-based
model. The proteins selected have no gaps in their structure determination and
consist of no more than 250 amino acids. Our previous studies have dealt with
7510 proteins of no more than 150 amino acids. The proteins are ranked
according to the strength of the resistance. Most of the predicted top-strength
proteins have not yet been studied experimentally. Architectures and folds
which are likely to yield large forces are identified. New types of potent
force clamps are discovered. They involve disulphide bridges and, in
particular, cysteine slipknots. An effective energy parameter of the model is
estimated by comparing the theoretical data on characteristic forces to the
corresponding experimental values combined with an extrapolation of the
theoretical data to the experimental pulling speeds. These studies provide
guidance for future experiments on single molecule manipulation and should lead
to selection of proteins for applications. A new class of proteins, involving
cystein slipknots, is identified as one that is expected to lead to the
strongest force clamps known. This class is characterized through molecular
dynamics simulations.Comment: 40 pages, 13 PostScript figure
Cooperative folding of intrinsically disordered domains drives assembly of a strong elongated protein.
Bacteria exploit surface proteins to adhere to other bacteria, surfaces and host cells. Such proteins need to project away from the bacterial surface and resist significant mechanical forces. SasG is a protein that forms extended fibrils on the surface of Staphylococcus aureus and promotes host adherence and biofilm formation. Here we show that although monomeric and lacking covalent cross-links, SasG maintains a highly extended conformation in solution. This extension is mediated through obligate folding cooperativity of the intrinsically disordered E domains that couple non-adjacent G5 domains thermodynamically, forming interfaces that are more stable than the domains themselves. Thus, counterintuitively, the elongation of the protein appears to be dependent on the inherent instability of its domains. The remarkable mechanical strength of SasG arises from tandemly arrayed 'clamp' motifs within the folded domains. Our findings reveal an elegant minimal solution for the assembly of monomeric mechano-resistant tethers of variable length.This research was supported by Biotechnology and Biological Research Council Grants BB/J006459/1 (D.T.G. and J.C.), BB/J005029/1 (F.W. and J.R.P), BB/G019452/1 (O.E.F and D.J.B) and BB/G020671/1 (C.G.B. and J.R.P.). H.K.H.F. is supported by a studentship from a Wellcome Trust 4-year PhD programme (WT095024MA). C.M.J. is supported by the German Federal Ministry of Education and Research (BMBF), grant BIOSCAT (contract N° 05K12YE1). J.C. is a Wellcome Trust Senior Research
Fellow (WT/095195). J.R.P holds a British Heart Foundation Senior Basic Science Fellowship (FS/12/36/29588). The authors acknowledge the use of EMBL SAXS beamline P12 at Petra-3 (DESY, Hamburg, Germany) and Maxim Petoukhov (EMBL) for providing a modified version of SASR EF. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under BioStruct-X (grant agreement N°283570). The authors would like to thank Diamond Light Source for beamtime (proposal mx-7864) and Johan Turkenburg and Sam Hart for assistance with crystal testing and data collection.This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/ncomms827
Sampling constrained probability distributions using Spherical Augmentation
Statistical models with constrained probability distributions are abundant in
machine learning. Some examples include regression models with norm constraints
(e.g., Lasso), probit, many copula models, and latent Dirichlet allocation
(LDA). Bayesian inference involving probability distributions confined to
constrained domains could be quite challenging for commonly used sampling
algorithms. In this paper, we propose a novel augmentation technique that
handles a wide range of constraints by mapping the constrained domain to a
sphere in the augmented space. By moving freely on the surface of this sphere,
sampling algorithms handle constraints implicitly and generate proposals that
remain within boundaries when mapped back to the original space. Our proposed
method, called {Spherical Augmentation}, provides a mathematically natural and
computationally efficient framework for sampling from constrained probability
distributions. We show the advantages of our method over state-of-the-art
sampling algorithms, such as exact Hamiltonian Monte Carlo, using several
examples including truncated Gaussian distributions, Bayesian Lasso, Bayesian
bridge regression, reconstruction of quantized stationary Gaussian process, and
LDA for topic modeling.Comment: 41 pages, 13 figure
Cooperative folding of intrinsically disordered domains drives assembly of a strong elongated protein
Bacteria exploit surface proteins to adhere to other bacteria, surfaces and host cells. Such proteins need to project away from the bacterial surface and resist significant mechanical forces. SasG is a protein that forms extended fibrils on the surface of Staphylococcus aureus and promotes host adherence and biofilm formation. Here we show that although monomeric and lacking covalent cross-links, SasG maintains a highly extended conformation in solution. This extension is mediated through obligate folding cooperativity of the intrinsically disordered E domains that couple non-adjacent G5 domains thermodynamically, forming interfaces that are more stable than the domains themselves. Thus, counterintuitively, the elongation of the protein appears to be dependent on the inherent instability of its domains. The remarkable mechanical strength of SasG arises from tandemly arrayed 'clamp' motifs within the folded domains. Our findings reveal an elegant minimal solution for the assembly of monomeric mechano-resistant tethers of variable length
BSDB: the biomolecule stretching database
We describe the Biomolecule Stretching Data Base that has been recently set up at http://www.ifpan.edu.pl/BSDB/. It provides information about mechanostability of proteins. Its core is based on simulations of stretching of 17 134 proteins within a structure-based model. The primary information is about the heights of the maximal force peaks, the force–displacement patterns, and the sequencing of the contact-rupturing events. We also summarize the possible types of the mechanical clamps, i.e. the motifs which are responsible for a protein's resistance to stretching
Discrimination of water quality monitoring sites in River Vouga using a mixed-effect state space model
The surface water quality monitoring is an important concern of public organizations due to its relevance to the public health. Statistical methods are taken as consistent and essential tools in the monitoring procedures in order to prevent and identify environmental problems. This work presents the study case of the hydrological basin of the river Vouga, in Portugal. The main goal is discriminate the water monitoring sites using the monthly dissolved oxygen concentration dataset between January 2002 and May 2013. This is achieved through the extraction of trend and seasonal components in a linear mixed-effect state space model. The parameters estimation is performed with both maximum likelihood method and distribution-free estimators in a two-step procedure. The application of the Kalman smoother algorithm allows to obtain predictions of the structural components as trend and seasonality. The water monitoring sites are discriminated through the structural components by a hierarchical agglomerative clustering procedure. This procedure identified different homogenous groups relatively to the trend and seasonality components and some characteristics of the hydrological basin are presented in order to support the results
- …