2,639 research outputs found
Programmable purification of type-I polarization-entanglement
We suggest and demonstrate a scheme to compensate spatial and spectral
decoherence effects in the generation of polarization entangled states by
type-I parametric downconversion. In our device a programmable spatial light
modulator imposes a polarization dependent phase-shift on different spatial
sections of the overall downconversion output and this effect is exploited to
realize an effective purification technique for polarization entanglement.Comment: published versio
The Axion and the Goldstone Higgs
We consider the renormalizable -model, in which the
Higgs particle has a pseudo-Nambu-Goldstone boson character, and explore what
the minimal field extension required to implement the Peccei-Quinn symmetry
(PQ) is, within the partial compositeness scenario. It turns out that the
minimal model does not require the enlargement of the exotic fermionic sector,
but only the addition of a singlet scalar: it is sufficient that the exotic
fermions involved in partial compositeness and the singlet scalar become
charged under Peccei-Quinn transformations. We explore the phenomenological
predictions for photonic signals in axion searches for all models discussed.
Because of the constraints imposed on the exotic fermion sector by the Standard
Model fermion masses, the expected range of allowed axion-photon couplings
turns out to be generically narrowed with respect to that of standard invisible
axion models, impacting the experimental quest.Comment: 31 pages, 2 Figures. Description improved, results unchange
Higgs ultraviolet softening
We analyze the leading effective operators which induce a quartic momentum
dependence in the Higgs propagator, for a linear and for a non-linear
realization of electroweak symmetry breaking. Their specific study is relevant
for the understanding of the ultraviolet sensitivity to new physics. Two
methods of analysis are applied, trading the Lagrangian coupling by: i) a
"ghost" scalar, after the Lee-Wick procedure; ii) other effective operators via
the equations of motion. The two paths are shown to lead to the same effective
Lagrangian at first order in the operator coefficients. It follows a
modification of the Higgs potential and of the fermionic couplings in the
linear realization, while in the non-linear one anomalous quartic gauge
couplings, Higgs-gauge couplings and gauge-fermion interactions are induced in
addition. Finally, all LHC Higgs and other data presently available are used to
constrain the operator coefficients; the future impact of data via off-shell Higgs exchange and of vector boson fusion data is
considered as well. For completeness, a summary of pure-gauge and gauge-Higgs
signals exclusive to non-linear dynamics at leading-order is included.Comment: 31 pages, 3 figures, 7 table
On the ab initio calculation of CVV Auger spectra in closed-shell systems
We propose an ab initio method to evaluate the core-valence-valence (CVV)
Auger spectrum of systems with filled valence bands. The method is based on the
Cini-Sawatzky theory, and aims at estimating the parameters by first-principles
calculations in the framework of density-functional theory (DFT). Photoemission
energies and the interaction energy for the two holes in the final state are
evaluated by performing DFT simulations for the system with varied population
of electronic levels. Transition matrix elements are taken from atomic results.
The approach takes into account the non-sphericity of the density of states of
the emitting atom, spin-orbit interaction in core and valence, and non
quadratic terms in the total energy expansion with respect to fractional
occupation numbers. It is tested on two benchmark systems, Zn and Cu metals,
leading in both cases to L23M45M45 Auger peaks within 2 eV from the
experimental ones. Detailed analysis is presented on the relative weight of the
various contributions considered in our method, providing the basis for future
development. Especially problematic is the evaluation of the hole-hole
interaction for systems with broad valence bands: our method underestimates its
value in Cu, while we obtain excellent results for this quantity in Zn.Comment: 20 pages, 5 figures, 4 table
The complete HEFT Lagrangian after the LHC Run I
The complete effective chiral Lagrangian for a dynamical Higgs is presented and constrained by means of a global analysis including electroweak precision data together with Higgs and triple gauge-boson coupling data from the LHC Run I. The operators’ basis up to next-to-leading order in the expansion consists of 148 (188 considering righthanded neutrinos) flavour universal terms and it is presented here making explicit the custodial nature of the operators. This effective Lagrangian provides the most general description of the physical Higgs couplings once the electroweak symmetry is assumed, and it allows for deviations from the SU (2)L doublet nature of the Standard Model Higgs. The comparison with the effective linear Lagrangian constructed with an exact SU (2)L doublet Higgs and considering operators with at most canonical dimension six is presented. A promising strategy to disentangle the two descriptions consists in analysing (i) anomalous signals present only in the chiral Lagrangian and not expected in the linear one, that are potentially relevant for LHC searches, and (ii) decorrelation effects between observables that are predicted to be correlated in the linear case and not in the chiral one. The global analysis presented here, which includes several kinematic distributions, is crucial for reducing the allowed parameter space and for controlling the correlations between parameters. This improves previous studies aimed at investigating the Higgs Nature and the origin of the electroweak symmetry breakingI.B. research was supported by an ESR contract of the EU network FP7 ITN INVISIBLES (Marie Curie Actions, PITN-GA-2011-289442).M.C.GG is supported by USA-NSF grant PHY-13-16617, by grants 2014- SGR-104 and by FPA2013-46570 and consolider-ingenio 2010 program CSD-2008-0037. L.M. acknowledge partial support of CiCYT through the project FPA2012-31880 and of the Spanish MINECO’s “Centro de Excelencia Severo Ochoa” Programme under grant SEV- 2012-0249. M.C.G-G and L.M. acknowledge partial support by FP7 ITN INVISIBLES (PITN-GA-2011-289442), FP10 ITN ELUSIVES (H2020-MSCA-ITN-2015-674896) and INVISIBLES-PLUS (H2020- MSCA-RISE-2015-690575
Disentangling a dynamical Higgs
The pattern of deviations from Standard Model predictions and couplings is
different for theories of new physics based on a non-linear realization of the
gauge symmetry breaking and those assuming a linear
realization. We clarify this issue in a model-independent way via its effective
Lagrangian formulation in the presence of a light Higgs particle, up to first
order in the expansions: dimension-six operators for the linear expansion and
four derivatives for the non-linear one. Complete sets of pure gauge and
gauge-Higgs operators are considered, implementing the renormalization
procedure and deriving the Feynman rules for the non-linear expansion. We
establish the theoretical relation and the differences in physics impact
between the two expansions. Promising discriminating signals include the
decorrelation in the non-linear case of signals correlated in the linear one:
some pure gauge versus gauge-Higgs couplings and also between couplings with
the same number of Higgs legs. Furthermore, anomalous signals expected at first
order in the non-linear realization may appear only at higher orders of the
linear one, and vice versa. We analyze in detail the impact of both type of
discriminating signals on LHC physics.Comment: Version published in JHE
The complete HEFT Lagragian after the LHC Run I
The complete effective chiral Lagrangian for a dynamical Higgs is presented and constrained by means of a global analysis including electroweak precision data together with Higgs and triple gauge-boson coupling data from the LHC Run I. The operators' basis up to next-to-leading order in the expansion consists of 148 (188 considering right-handed neutrinos) flavour universal terms and it is presented here making explicit the custodial nature of the operators. This effective Lagrangian provides the most general description of the physical Higgs couplings once the electroweak symmetry is assumed, and it allows for deviations from the SU(2)L doublet nature of the Standard Model Higgs. The comparison with the effective linear Lagrangian constructed with an exact SU(2)L doublet Higgs and considering operators with at most canonical dimension six is presented. A promising strategy to disentangle the two descriptions consists in analysing (i) anomalous signals present only in the chiral Lagrangian and not expected in the linear one, that are potentially relevant for LHC searches, and (ii) decorrelation effects between observables that are predicted to be correlated in the linear case and not in the chiral one. The global analysis presented here, which includes several kinematic distributions, is crucial for reducing the allowed parameter space and for controlling the correlations between parameters. This improves previous studies aimed at investigating the Higgs Nature and the origin of the electroweak symmetry breaking
One-loop corrections to ALP couplings
The plethora of increasingly precise experiments which hunt for axion-like particles (ALPs), as well as their widely different energy reach, call for the theoretical understanding of ALP couplings at loop-level. We derive the one-loop contributions to ALP-SM effective couplings, including finite corrections. The complete leading-order — dimension five — effective linear Lagrangian is considered. The ALP is left off-shell, which is of particular impact on LHC and accelerator searches of ALP couplings to γγ, ZZ, Zγ, WW, gluons and fermions. All results are obtained in the covariant Rξ gauge. A few phenomenological consequences are also explored as illustration, with flavour diagonal channels in the case of fermions: in particular, we explore constraints on the coupling of the ALP to top quarks, that can be extracted from LHC data, from astrophysical sources and from Dark Matter direct detection experiments such as PandaX, LUX and XENON1T. Furthermore, we clarify the relation between alternative ALP bases, the role of gauge anomalous couplings and their interface with chirality-conserving and chirality-flip fermion interactions, and we briefly discuss renormalization group aspect
Unitarity constraints on ALP interactions
We derive partial-wave unitarity constraints on gauge-invariant interactions
of an Axion-Like Particle (ALP) up to dimension-6 from all allowed
scattering processes in the limit of large center-of-mass energy. We find that
the strongest bounds stem from scattering amplitudes with one external ALP and
only apply to the coupling to a pair of gauge bosons. Couplings to
and gauge bosons and to fermions are more loosely
constrained.Comment: 11 pages, 1 figure, 5 table
- …